ResInsight/ApplicationCode/SocketInterface/RiaGeometryCommands.cpp
2014-08-14 10:56:25 +02:00

375 lines
13 KiB
C++

//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RiaStdInclude.h"
#include "RiaSocketCommand.h"
#include "RiaSocketServer.h"
#include "RiaSocketTools.h"
#include "RimReservoirView.h"
#include "RimResultSlot.h"
#include "RimCellEdgeResultSlot.h"
#include "RimCellRangeFilterCollection.h"
#include "RimCellPropertyFilterCollection.h"
#include "RimWellCollection.h"
#include "Rim3dOverlayInfoConfig.h"
#include "RimReservoirCellResultsStorage.h"
#include "RimCase.h"
#include "RigCaseData.h"
#include "RigCaseCellResultsData.h"
#include <QTcpSocket>
#include "RiaApplication.h"
#include "RiaPreferences.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class RiaGetCellCenters : public RiaSocketCommand
{
public:
static QString commandName () { return QString("GetCellCenters"); }
virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>& args, QDataStream& socketStream)
{
RimCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args);
size_t argGridIndex = args[2].toUInt();
if (!rimCase || !rimCase->reservoirData() || (argGridIndex >= rimCase->reservoirData()->gridCount()) )
{
// No data available
socketStream << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0;
return true;
}
RigGridBase* rigGrid = rimCase->reservoirData()->grid(argGridIndex);
quint64 cellCount = (quint64)rigGrid->cellCount();
quint64 cellCountI = (quint64)rigGrid->cellCountI();
quint64 cellCountJ = (quint64)rigGrid->cellCountJ();
quint64 cellCountK = (quint64)rigGrid->cellCountK();
socketStream << cellCount;
socketStream << cellCountI;
socketStream << cellCountJ;
socketStream << cellCountK;
size_t doubleValueCount = cellCount * 3;
quint64 byteCount = doubleValueCount * sizeof(double);
socketStream << byteCount;
// This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is
// defined by the ordering of the receiving NDArray
//
// See riGetCellCenters
//
// dim_vector dv;
// dv.resize(4);
// dv(0) = cellCountI;
// dv(1) = cellCountJ;
// dv(2) = cellCountK;
// dv(3) = 3;
cvf::Vec3d cornerVerts[8];
size_t blockByteCount = cellCount * sizeof(double);
std::vector<double> doubleValues(blockByteCount);
for (int coordIdx = 0; coordIdx < 3; coordIdx++)
{
quint64 valueIndex = 0;
for (size_t k = 0; k < cellCountK; k++)
{
for (size_t j = 0; j < cellCountJ; j++)
{
for (size_t i = 0; i < cellCountI; i++)
{
size_t gridLocalCellIndex = rigGrid->cellIndexFromIJK(i, j, k);
cvf::Vec3d center = rigGrid->cell(gridLocalCellIndex).center();
doubleValues[valueIndex++] = center[coordIdx];
}
}
}
CVF_ASSERT(valueIndex == cellCount);
RiaSocketTools::writeBlockData(server, server->currentClient(), (const char *)doubleValues.data(), blockByteCount);
}
return true;
}
};
static bool RiaGetCellCenters_init = RiaSocketCommandFactory::instance()->registerCreator<RiaGetCellCenters>(RiaGetCellCenters::commandName());
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class RiaGetActiveCellCenters : public RiaSocketCommand
{
public:
static QString commandName () { return QString("GetActiveCellCenters"); }
virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>& args, QDataStream& socketStream)
{
RimCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args);
QString porosityModelName;
porosityModelName = args[2];
RifReaderInterface::PorosityModelResultType porosityModelEnum = RifReaderInterface::MATRIX_RESULTS;
if (porosityModelName.toUpper() == "FRACTURE")
{
porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS;
}
if (!rimCase || !rimCase->reservoirData())
{
// No data available
socketStream << (quint64)0 << (quint64)0 ;
return true;
}
RigActiveCellInfo* actCellInfo = rimCase->reservoirData()->activeCellInfo(porosityModelEnum);
RigMainGrid* mainGrid = rimCase->reservoirData()->mainGrid();
size_t activeCellCount = actCellInfo->reservoirActiveCellCount();
size_t doubleValueCount = activeCellCount * 3;
socketStream << (quint64)activeCellCount;
quint64 byteCount = doubleValueCount * sizeof(double);
socketStream << byteCount;
// This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is
// defined by the ordering of the receiving NDArray
//
// See riGetActiveCellCenters
//
// dim_vector dv;
// dv.resize(2);
// dv(0) = coordCount;
// dv(1) = 3;
size_t blockByteCount = activeCellCount * sizeof(double);
std::vector<double> doubleValues(blockByteCount);
for (int coordIdx = 0; coordIdx < 3; coordIdx++)
{
quint64 valueIndex = 0;
for (size_t reservoirCellIndex = 0; reservoirCellIndex < mainGrid->cells().size(); reservoirCellIndex++)
{
if (!actCellInfo->isActive(reservoirCellIndex)) continue;
cvf::Vec3d center = mainGrid->cells()[reservoirCellIndex].center();
doubleValues[valueIndex++] = center[coordIdx];
}
CVF_ASSERT(valueIndex == activeCellCount);
RiaSocketTools::writeBlockData(server, server->currentClient(), (const char *)doubleValues.data(), blockByteCount);
}
return true;
}
};
static bool RiaGetActiveCellCenters_init = RiaSocketCommandFactory::instance()->registerCreator<RiaGetActiveCellCenters>(RiaGetActiveCellCenters::commandName());
// NB: Match this mapping with the mapping in RifReaderEclipseOutput.cpp
static const size_t cellCornerMappingEclipse[8] = { 0, 1, 3, 2, 4, 5, 7, 6 };
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class RiaGetCellCorners : public RiaSocketCommand
{
public:
static QString commandName () { return QString("GetCellCorners"); }
virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>& args, QDataStream& socketStream)
{
RimCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args);
size_t argGridIndex = args[2].toUInt();
if (!rimCase || !rimCase->reservoirData() || (argGridIndex >= rimCase->reservoirData()->gridCount()) )
{
// No data available
socketStream << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0 << (quint64)0;
return true;
}
RigGridBase* rigGrid = rimCase->reservoirData()->grid(argGridIndex);
quint64 cellCount = (quint64)rigGrid->cellCount();
quint64 cellCountI = (quint64)rigGrid->cellCountI();
quint64 cellCountJ = (quint64)rigGrid->cellCountJ();
quint64 cellCountK = (quint64)rigGrid->cellCountK();
size_t doubleValueCount = cellCount * 3 * 8;
quint64 byteCount = doubleValueCount * sizeof(double);
socketStream << cellCount;
socketStream << cellCountI;
socketStream << cellCountJ;
socketStream << cellCountK;
socketStream << byteCount;
// This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is
// defined by the ordering of the receiving NDArray
//
// See riGetCellCorners
//
// dim_vector dv;
// dv.resize(5);
// dv(0) = cellCountI;
// dv(1) = cellCountJ;
// dv(2) = cellCountK;
// dv(3) = 8;
// dv(4) = 3;
cvf::Vec3d cornerVerts[8];
size_t blockByteCount = cellCount * sizeof(double);
std::vector<double> doubleValues(blockByteCount);
for (int coordIdx = 0; coordIdx < 3; coordIdx++)
{
for (size_t cornerIdx = 0; cornerIdx < 8; cornerIdx++)
{
size_t cornerIndexMapping = cellCornerMappingEclipse[cornerIdx];
quint64 valueIndex = 0;
for (size_t k = 0; k < cellCountK; k++)
{
for (size_t j = 0; j < cellCountJ; j++)
{
for (size_t i = 0; i < cellCountI; i++)
{
size_t gridLocalCellIndex = rigGrid->cellIndexFromIJK(i, j, k);
rigGrid->cellCornerVertices(gridLocalCellIndex, cornerVerts);
doubleValues[valueIndex++] = cornerVerts[cornerIndexMapping][coordIdx];
}
}
}
CVF_ASSERT(valueIndex == cellCount);
RiaSocketTools::writeBlockData(server, server->currentClient(), (const char *)doubleValues.data(), blockByteCount);
}
}
return true;
}
};
static bool RiaGetCellCorners_init = RiaSocketCommandFactory::instance()->registerCreator<RiaGetCellCorners>(RiaGetCellCorners::commandName());
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class RiaGetActiveCellCorners : public RiaSocketCommand
{
public:
static QString commandName () { return QString("GetActiveCellCorners"); }
virtual bool interpretCommand(RiaSocketServer* server, const QList<QByteArray>& args, QDataStream& socketStream)
{
RimCase* rimCase = RiaSocketTools::findCaseFromArgs(server, args);
QString porosityModelName;
porosityModelName = args[2];
RifReaderInterface::PorosityModelResultType porosityModelEnum = RifReaderInterface::MATRIX_RESULTS;
if (porosityModelName.toUpper() == "FRACTURE")
{
porosityModelEnum = RifReaderInterface::FRACTURE_RESULTS;
}
if (!rimCase || !rimCase->reservoirData() )
{
// No data available
socketStream << (quint64)0 << (quint64)0 ;
return true;
}
RigActiveCellInfo* actCellInfo = rimCase->reservoirData()->activeCellInfo(porosityModelEnum);
RigMainGrid* mainGrid = rimCase->reservoirData()->mainGrid();
size_t activeCellCount = actCellInfo->reservoirActiveCellCount();
size_t doubleValueCount = activeCellCount * 3 * 8;
socketStream << (quint64)activeCellCount;
quint64 byteCount = doubleValueCount * sizeof(double);
socketStream << byteCount;
// This structure is supposed to be received by Octave using a NDArray. The ordering of this loop is
// defined by the ordering of the receiving NDArray
//
// See riGetCellCorners
//
// dim_vector dv;
// dv.resize(3);
// dv(0) = coordCount;
// dv(1) = 8;
// dv(2) = 3;
cvf::Vec3d cornerVerts[8];
size_t blockByteCount = activeCellCount * sizeof(double);
std::vector<double> doubleValues(blockByteCount);
for (int coordIdx = 0; coordIdx < 3; coordIdx++)
{
for (size_t cornerIdx = 0; cornerIdx < 8; cornerIdx++)
{
size_t cornerIndexMapping = cellCornerMappingEclipse[cornerIdx];
quint64 valueIndex = 0;
for (size_t reservoirCellIndex = 0; reservoirCellIndex < mainGrid->cells().size(); reservoirCellIndex++)
{
if (!actCellInfo->isActive(reservoirCellIndex)) continue;
mainGrid->cellCornerVertices(reservoirCellIndex, cornerVerts);
doubleValues[valueIndex++] = cornerVerts[cornerIndexMapping][coordIdx];
}
CVF_ASSERT(valueIndex == activeCellCount);
RiaSocketTools::writeBlockData(server, server->currentClient(), (const char *)doubleValues.data(), blockByteCount);
}
}
return true;
}
};
static bool RiaGetActiveCellCorners_init = RiaSocketCommandFactory::instance()->registerCreator<RiaGetActiveCellCorners>(RiaGetActiveCellCorners::commandName());