ResInsight/ApplicationLibCode/ModelVisualization/RivElementVectorResultPartMgr.cpp
Magne Sjaastad b7f8d0e0f1
Increase warning level
* Set warning level to /W3 for MSVC to catch more warnings
* remove several excluded checks for clang
* removed several unused variables
* Hide warnings qwt
* add missing parentheses in logical expressions
* Remove double check on same logical expression
2023-04-17 15:57:39 +02:00

528 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivElementVectorResultPartMgr.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimElementVectorResult.h"
#include "RimRegularLegendConfig.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigCell.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultAddress.h"
#include "RigMainGrid.h"
#include "RigNNCData.h"
#include "cafDisplayCoordTransform.h"
#include "cafEffectGenerator.h"
#include "cvfDrawableGeo.h"
#include "cvfGeometryTools.h"
#include "cvfModelBasicList.h"
#include "cvfPart.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfShaderProgram.h"
#include "cvfStructGrid.h"
#include "cvfStructGridGeometryGenerator.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivElementVectorResultPartMgr::RivElementVectorResultPartMgr( RimEclipseView* reservoirView )
{
m_rimReservoirView = reservoirView;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivElementVectorResultPartMgr::~RivElementVectorResultPartMgr()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivElementVectorResultPartMgr::setTransform( cvf::Transform* scaleTransform )
{
m_scaleTransform = scaleTransform;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivElementVectorResultPartMgr::appendDynamicGeometryPartsToModel( cvf::ModelBasicList* model, size_t timeStepIndex )
{
CVF_ASSERT( model );
if ( m_rimReservoirView.isNull() ) return;
RimEclipseCase* eclipseCase = m_rimReservoirView->eclipseCase();
if ( !eclipseCase ) return;
RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
if ( !eclipseCaseData ) return;
RimElementVectorResult* result = m_rimReservoirView->elementVectorResult();
if ( !result ) return;
if ( !result->showResult() ) return;
cvf::ref<caf::DisplayCoordTransform> displayCordXf = m_rimReservoirView->displayCoordTransform();
std::vector<ElementVectorResultVisualization> tensorVisualizations;
double characteristicCellSize = eclipseCase->characteristicCellSize();
float arrowConstantScaling = 10.0 * result->sizeScale() * characteristicCellSize;
double maxAbsResult = 1.0;
{
double min, max;
result->mappingRange( min, max );
if ( min != cvf::UNDEFINED_DOUBLE && max != cvf::UNDEFINED_DOUBLE )
{
maxAbsResult = std::max( cvf::Math::abs( max ), cvf::Math::abs( min ) );
}
}
float arrowScaling = arrowConstantScaling / maxAbsResult;
std::vector<RigEclipseResultAddress> resultAddresses;
std::vector<cvf::StructGridInterface::FaceType> directions;
RigCaseCellResultsData* resultsData = eclipseCaseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
{
std::vector<RigEclipseResultAddress> addresses;
result->resultAddressesIJK( addresses );
for ( size_t fluidIndex = 0; fluidIndex < addresses.size(); fluidIndex += 3 )
{
if ( result->showVectorI() )
{
if ( fluidIndex == 0 ) directions.push_back( cvf::StructGridInterface::POS_I );
auto candidate = addresses[0 + fluidIndex];
if ( resultsData->hasResultEntry( candidate ) && !resultsData->cellScalarResults( candidate, timeStepIndex ).empty() )
{
resultAddresses.push_back( candidate );
}
}
if ( result->showVectorJ() )
{
if ( fluidIndex == 0 ) directions.push_back( cvf::StructGridInterface::POS_J );
auto candidate = addresses[1 + fluidIndex];
if ( resultsData->hasResultEntry( candidate ) && !resultsData->cellScalarResults( candidate, timeStepIndex ).empty() )
{
resultAddresses.push_back( candidate );
}
}
if ( result->showVectorK() )
{
if ( fluidIndex == 0 ) directions.push_back( cvf::StructGridInterface::POS_K );
auto candidate = addresses[2 + fluidIndex];
if ( resultsData->hasResultEntry( candidate ) && !resultsData->cellScalarResults( candidate, timeStepIndex ).empty() )
{
resultAddresses.push_back( candidate );
}
}
}
}
RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
const std::vector<RigCell>& cells = eclipseCase->mainGrid()->globalCellArray();
auto getFaceCenterAndNormal = [cells, arrowScaling, displayCordXf]( size_t globalCellIdx,
cvf::StructGridInterface::FaceType faceType,
cvf::Vec3d& faceCenter,
cvf::Vec3d& faceNormal )
{
faceCenter = displayCordXf->transformToDisplayCoord( cells[globalCellIdx].faceCenter( faceType ) );
cvf::Vec3d cellCenter = displayCordXf->transformToDisplayCoord( cells[globalCellIdx].center() );
faceNormal = ( faceCenter - cellCenter ).getNormalized() * arrowScaling;
};
if ( !resultAddresses.empty() && !directions.empty() )
{
#pragma omp parallel for
for ( int gcIdx = 0; gcIdx < static_cast<int>( cells.size() ); ++gcIdx )
{
if ( !cells[gcIdx].isInvalid() && activeCellInfo->isActive( gcIdx ) )
{
size_t resultIdx = activeCellInfo->cellResultIndex( gcIdx );
if ( result->vectorView() == RimElementVectorResult::VectorView::PER_FACE )
{
for ( int dir = 0; dir < static_cast<int>( directions.size() ); dir++ )
{
double resultValue = 0.0;
for ( size_t flIdx = dir; flIdx < resultAddresses.size(); flIdx += directions.size() )
{
resultValue += resultsData->cellScalarResults( resultAddresses[flIdx], timeStepIndex ).at( resultIdx );
}
if ( std::abs( resultValue ) >= result->threshold() )
{
cvf::Vec3d faceCenter;
cvf::Vec3d faceNormal;
getFaceCenterAndNormal( static_cast<size_t>( gcIdx ), directions[dir], faceCenter, faceNormal );
faceNormal *= std::abs( resultValue );
bool centerArrow = false;
if ( result->vectorSuraceCrossingLocation() == RimElementVectorResult::VectorSurfaceCrossingLocation::VECTOR_CENTER &&
result->vectorView() == RimElementVectorResult::VectorView::PER_FACE )
{
centerArrow = true;
}
#pragma omp critical( critical_section_RivElementVectorResultPartMgr_add_1 )
tensorVisualizations.push_back( ElementVectorResultVisualization( faceCenter,
faceNormal,
resultValue,
std::cbrt( cells[gcIdx].volume() / 3.0 ),
centerArrow ) );
}
}
}
else if ( result->vectorView() == RimElementVectorResult::VectorView::CELL_CENTER_TOTAL )
{
cvf::Vec3d aggregatedVector;
cvf::Vec3d aggregatedResult;
for ( int dir = 0; dir < static_cast<int>( directions.size() ); dir++ )
{
double resultValue = 0.0;
for ( size_t flIdx = dir; flIdx < resultAddresses.size(); flIdx += directions.size() )
{
resultValue += resultsData->cellScalarResults( resultAddresses[flIdx], timeStepIndex ).at( resultIdx );
}
cvf::Vec3d faceCenter;
cvf::Vec3d faceNormal;
cvf::Vec3d faceNormalScaled;
getFaceCenterAndNormal( gcIdx, directions[dir], faceCenter, faceNormal );
faceNormalScaled = faceNormal * resultValue;
aggregatedVector += faceNormalScaled;
aggregatedResult += faceNormal.getNormalized() * resultValue;
}
if ( aggregatedResult.length() >= result->threshold() )
{
bool centerArrow = false;
if ( result->vectorSuraceCrossingLocation() == RimElementVectorResult::VectorSurfaceCrossingLocation::VECTOR_CENTER )
{
centerArrow = true;
}
#pragma omp critical( critical_section_RivElementVectorResultPartMgr_add_2 )
tensorVisualizations.push_back(
ElementVectorResultVisualization( displayCordXf->transformToDisplayCoord( cells[gcIdx].center() ),
aggregatedVector,
aggregatedResult.length(),
std::cbrt( cells[gcIdx].volume() / 3.0 ),
centerArrow ) );
}
}
}
}
}
if ( result->showNncData() )
{
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
nncData->buildPolygonsForEclipseConnections();
std::vector<const std::vector<std::vector<double>>*> nncResultVals;
std::vector<RigEclipseResultAddress> combinedAddresses;
result->resultAddressesCombined( combinedAddresses );
for ( auto candidate : combinedAddresses )
{
if ( candidate.resultCatType() == RiaDefines::ResultCatType::DYNAMIC_NATIVE )
{
if ( nncData->hasScalarValues( candidate ) )
{
nncResultVals.push_back( nncData->dynamicConnectionScalarResult( candidate ) );
}
}
}
#pragma omp parallel for
for ( int nIdx = 0; nIdx < static_cast<int>( nncData->eclipseConnectionCount() ); ++nIdx )
{
const RigConnection& conn = nncData->availableConnections()[nIdx];
if ( conn.polygon().size() )
{
double resultValue = 0.0;
for ( size_t flIdx = 0; flIdx < nncResultVals.size(); flIdx++ )
{
if ( nIdx < static_cast<int>( nncResultVals.at( flIdx )->at( timeStepIndex ).size() ) )
{
resultValue += nncResultVals.at( flIdx )->at( timeStepIndex )[nIdx];
}
}
cvf::Vec3d connCenter = static_cast<cvf::Vec3d>( cvf::GeometryTools::computePolygonCenter<cvf::Vec3f>( conn.polygon() ) );
cvf::Vec3d faceCenter;
cvf::Vec3d connNormal;
getFaceCenterAndNormal( conn.c1GlobIdx(), conn.face(), faceCenter, connNormal );
connNormal *= std::abs( resultValue );
if ( std::abs( resultValue ) >= result->threshold() )
{
bool centerArrow = false;
if ( result->vectorView() == RimElementVectorResult::VectorView::CELL_CENTER_TOTAL )
{
centerArrow = true;
}
else if ( result->vectorView() == RimElementVectorResult::VectorView::PER_FACE )
{
if ( result->vectorSuraceCrossingLocation() == RimElementVectorResult::VectorSurfaceCrossingLocation::VECTOR_CENTER )
centerArrow = true;
}
#pragma omp critical( critical_section_RivElementVectorResultPartMgr_add_nnc )
tensorVisualizations.push_back( ElementVectorResultVisualization( displayCordXf->transformToDisplayCoord( connCenter ),
connNormal,
resultValue,
std::cbrt( cells[conn.c1GlobIdx()].volume() / 3.0 ),
centerArrow ) );
}
}
}
}
if ( !tensorVisualizations.empty() )
{
cvf::ref<cvf::Part> partIdx = createPart( *result, tensorVisualizations );
partIdx->updateBoundingBox();
model->addPart( partIdx.p() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::Part> RivElementVectorResultPartMgr::createPart( const RimElementVectorResult& result,
const std::vector<ElementVectorResultVisualization>& tensorVisualizations ) const
{
std::vector<uint> shaftIndices;
shaftIndices.reserve( tensorVisualizations.size() * 2 );
std::vector<uint> headIndices;
headIndices.reserve( tensorVisualizations.size() * 6 );
std::vector<cvf::Vec3f> vertices;
vertices.reserve( tensorVisualizations.size() * 7 );
uint counter = 0;
for ( const ElementVectorResultVisualization& tensor : tensorVisualizations )
{
for ( const cvf::Vec3f& vertex : createArrowVertices( tensor ) )
{
vertices.push_back( vertex );
}
for ( const uint& index : createArrowShaftIndices( counter ) )
{
shaftIndices.push_back( index );
}
for ( const uint& index : createArrowHeadIndices( counter ) )
{
headIndices.push_back( index );
}
counter += 7;
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUIntShaft = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
cvf::ref<cvf::UIntArray> indexArrayShaft = new cvf::UIntArray( shaftIndices );
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUIntHead = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_TRIANGLES );
cvf::ref<cvf::UIntArray> indexArrayHead = new cvf::UIntArray( headIndices );
cvf::ref<cvf::DrawableGeo> drawable = new cvf::DrawableGeo();
indexedUIntShaft->setIndices( indexArrayShaft.p() );
drawable->addPrimitiveSet( indexedUIntShaft.p() );
indexedUIntHead->setIndices( indexArrayHead.p() );
drawable->addPrimitiveSet( indexedUIntHead.p() );
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( vertices );
drawable->setVertexArray( vertexArray.p() );
cvf::ref<cvf::Vec2fArray> lineTexCoords = const_cast<cvf::Vec2fArray*>( drawable->textureCoordArray() );
if ( lineTexCoords.isNull() )
{
lineTexCoords = new cvf::Vec2fArray;
}
const cvf::ScalarMapper* activeScalerMapper = nullptr;
cvf::ref<cvf::Effect> effect;
auto vectorColors = result.vectorColors();
if ( vectorColors == RimElementVectorResult::TensorColors::RESULT_COLORS )
{
activeScalerMapper = result.legendConfig()->scalarMapper();
createResultColorTextureCoords( lineTexCoords.p(), tensorVisualizations, activeScalerMapper );
caf::ScalarMapperMeshEffectGenerator meshEffGen( activeScalerMapper );
effect = meshEffGen.generateCachedEffect();
}
else
{
caf::SurfaceEffectGenerator surfaceGen( result.getUniformVectorColor(), caf::PO_1 );
surfaceGen.enableLighting( !m_rimReservoirView->isLightingDisabled() );
effect = surfaceGen.generateCachedEffect();
}
drawable->setTextureCoordArray( lineTexCoords.p() );
cvf::ref<cvf::Part> part = new cvf::Part;
part->setName( "RivElementVectorResultPartMgr::createPart" );
part->setDrawable( drawable.p() );
part->setEffect( effect.p() );
return part;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivElementVectorResultPartMgr::createResultColorTextureCoords( cvf::Vec2fArray* textureCoords,
const std::vector<ElementVectorResultVisualization>& elementVectorResultVisualizations,
const cvf::ScalarMapper* mapper )
{
CVF_ASSERT( textureCoords );
CVF_ASSERT( mapper );
size_t vertexCount = elementVectorResultVisualizations.size() * 7;
if ( textureCoords->size() != vertexCount ) textureCoords->reserve( vertexCount );
for ( auto& evrViz : elementVectorResultVisualizations )
{
for ( size_t vxIdx = 0; vxIdx < 7; ++vxIdx )
{
cvf::Vec2f texCoord = mapper->mapToTextureCoord( std::abs( evrViz.result ) );
textureCoords->add( texCoord );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<cvf::Vec3f, 7> RivElementVectorResultPartMgr::createArrowVertices( const ElementVectorResultVisualization& evrViz ) const
{
std::array<cvf::Vec3f, 7> vertices;
RimElementVectorResult* result = m_rimReservoirView->elementVectorResult();
if ( !result ) return vertices;
cvf::Vec3f headTop = evrViz.faceCenter + evrViz.faceNormal;
cvf::Vec3f shaftStart = evrViz.faceCenter;
if ( evrViz.centerArrow )
{
headTop = evrViz.faceCenter + evrViz.faceNormal / 2.0;
shaftStart = evrViz.faceCenter - evrViz.faceNormal / 2.0;
}
// Flip arrow for negative results and if the vector is not aggregated (in which case we do not have any negative
// result)
if ( evrViz.result < 0 )
{
std::swap( headTop, shaftStart );
}
float headLength = std::min<float>( evrViz.approximateCellLength / 3.0f, ( headTop - shaftStart ).length() / 2.0 );
// A fixed size is preferred here
cvf::Vec3f headBottom = headTop - ( headTop - shaftStart ).getNormalized() * headLength;
float arrowWidth = headLength / 2.0f;
cvf::Vec3f headBottomDirection1 = evrViz.faceNormal ^ evrViz.faceCenter;
cvf::Vec3f headBottomDirection2 = headBottomDirection1 ^ evrViz.faceNormal;
cvf::Vec3f arrowBottomSegment1 = headBottomDirection1.getNormalized() * arrowWidth;
cvf::Vec3f arrowBottomSegment2 = headBottomDirection2.getNormalized() * arrowWidth;
vertices[0] = shaftStart;
vertices[1] = headBottom;
vertices[2] = headBottom + arrowBottomSegment1;
vertices[3] = headBottom - arrowBottomSegment1;
vertices[4] = headTop;
vertices[5] = headBottom + arrowBottomSegment2;
vertices[6] = headBottom - arrowBottomSegment2;
return vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<uint, 2> RivElementVectorResultPartMgr::createArrowShaftIndices( uint startIndex ) const
{
std::array<uint, 2> indices;
indices[0] = startIndex;
indices[1] = startIndex + 1;
return indices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::array<uint, 6> RivElementVectorResultPartMgr::createArrowHeadIndices( uint startIndex ) const
{
std::array<uint, 6> indices;
indices[0] = startIndex + 2;
indices[1] = startIndex + 3;
indices[2] = startIndex + 4;
indices[3] = startIndex + 5;
indices[4] = startIndex + 6;
indices[5] = startIndex + 4;
return indices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RivElementVectorResultPartMgr::scaleLogarithmically( double value ) const
{
// If values are smaller than one, the logarithm would return
// increasing negative values the smaller the number is. However, small
// numbers shall remain small and not be scaled up. In order to achieve this,
// add 1.0 to small values in order to still obtain small positive numbers after scaling.
if ( value <= 1.0 )
{
value += 1.0;
}
return std::log10( value );
}