ResInsight/ApplicationCode/ReservoirDataModel/RigCaseCellResultsData.cpp
2017-08-25 06:58:47 +02:00

849 lines
38 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCaseCellResultsData.h"
#include "RigEclipseMultiPropertyStatCalc.h"
#include "RigEclipseNativeStatCalc.h"
#include "RigMainGrid.h"
#include "RigEclipseResultInfo.h"
#include "RigStatisticsDataCache.h"
#include "RigStatisticsMath.h"
#include <QDateTime>
#include <math.h>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigCaseCellResultsData::RigCaseCellResultsData(RigMainGrid* ownerGrid) : m_activeCellInfo(NULL)
{
CVF_ASSERT(ownerGrid != NULL);
m_ownerMainGrid = ownerGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::setMainGrid(RigMainGrid* ownerGrid)
{
m_ownerMainGrid = ownerGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::minMaxCellScalarValues(size_t scalarResultIndex, double& min, double& max)
{
m_statisticsDataCache[scalarResultIndex]->minMaxCellScalarValues(min, max);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::minMaxCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& min, double& max)
{
m_statisticsDataCache[scalarResultIndex]->minMaxCellScalarValues(timeStepIndex, min, max);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::posNegClosestToZero(size_t scalarResultIndex, double& pos, double& neg)
{
m_statisticsDataCache[scalarResultIndex]->posNegClosestToZero(pos, neg);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::posNegClosestToZero(size_t scalarResultIndex, size_t timeStepIndex, double& pos, double& neg)
{
m_statisticsDataCache[scalarResultIndex]->posNegClosestToZero(timeStepIndex, pos, neg);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigCaseCellResultsData::cellScalarValuesHistogram(size_t scalarResultIndex)
{
return m_statisticsDataCache[scalarResultIndex]->cellScalarValuesHistogram();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigCaseCellResultsData::cellScalarValuesHistogram(size_t scalarResultIndex, size_t timeStepIndex)
{
return m_statisticsDataCache[scalarResultIndex]->cellScalarValuesHistogram(timeStepIndex);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::p10p90CellScalarValues(size_t scalarResultIndex, double& p10, double& p90)
{
m_statisticsDataCache[scalarResultIndex]->p10p90CellScalarValues(p10, p90);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::p10p90CellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& p10, double& p90)
{
m_statisticsDataCache[scalarResultIndex]->p10p90CellScalarValues(timeStepIndex, p10, p90);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::meanCellScalarValues(size_t scalarResultIndex, double& meanValue)
{
m_statisticsDataCache[scalarResultIndex]->meanCellScalarValues(meanValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::meanCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& meanValue)
{
m_statisticsDataCache[scalarResultIndex]->meanCellScalarValues(timeStepIndex, meanValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<int>& RigCaseCellResultsData::uniqueCellScalarValues(size_t scalarResultIndex)
{
return m_statisticsDataCache[scalarResultIndex]->uniqueCellScalarValues();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::sumCellScalarValues(size_t scalarResultIndex, double& sumValue)
{
m_statisticsDataCache[scalarResultIndex]->sumCellScalarValues(sumValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::sumCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& sumValue)
{
m_statisticsDataCache[scalarResultIndex]->sumCellScalarValues(timeStepIndex, sumValue);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::resultCount() const
{
return m_cellScalarResults.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::timeStepCount(size_t scalarResultIndex) const
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
return m_cellScalarResults[scalarResultIndex].size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector< std::vector<double> > & RigCaseCellResultsData::cellScalarResults( size_t scalarResultIndex ) const
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
return m_cellScalarResults[scalarResultIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector< std::vector<double> > & RigCaseCellResultsData::cellScalarResults( size_t scalarResultIndex )
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
return m_cellScalarResults[scalarResultIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>& RigCaseCellResultsData::cellScalarResults(size_t scalarResultIndex, size_t timeStepIndex)
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
CVF_TIGHT_ASSERT(timeStepIndex < m_cellScalarResults[scalarResultIndex].size());
return m_cellScalarResults[scalarResultIndex][timeStepIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::findScalarResultIndex(RiaDefines::ResultCatType type, const QString& resultName) const
{
std::vector<RigEclipseResultInfo>::const_iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); ++it)
{
if (it->m_resultType == type && it->m_resultName == resultName)
{
return it->m_gridScalarResultIndex;
}
}
return cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::findScalarResultIndex(const QString& resultName) const
{
size_t scalarResultIndex = this->findScalarResultIndex(RiaDefines::STATIC_NATIVE, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RiaDefines::SOURSIMRL, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RiaDefines::GENERATED, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RiaDefines::INPUT_PROPERTY, resultName);
}
if(scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RiaDefines::FORMATION_NAMES, resultName);
}
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
/// Adds an empty scalar set, and returns the scalarResultIndex to it.
/// if resultName already exists, it just returns the scalarResultIndex to the existing result.
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::findOrCreateScalarResultIndex(RiaDefines::ResultCatType type, const QString& resultName, bool needsToBeStored)
{
size_t scalarResultIndex = this->findScalarResultIndex(type, resultName);
// If the result exists, do nothing
if (scalarResultIndex != cvf::UNDEFINED_SIZE_T)
{
return scalarResultIndex;
}
// Create the new empty result with metadata
scalarResultIndex = this->resultCount();
m_cellScalarResults.push_back(std::vector<std::vector<double> >());
RigEclipseResultInfo resInfo(type, needsToBeStored, false, resultName, scalarResultIndex);
m_resultInfos.push_back(resInfo);
// Create statistics calculator and add statistics cache object
// Todo: Move to a "factory" method
cvf::ref<RigStatisticsCalculator> statisticsCalculator;
if (resultName == RiaDefines::combinedTransmissibilityResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANX"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANY"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANZ"));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedMultResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "MULTX"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "MULTX-"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "MULTY"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "MULTY-"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "MULTZ"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, "MULTZ-"));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedRiTranResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riTranXResultName()));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riTranYResultName()));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riTranZResultName()));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedRiMultResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riMultXResultName()));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riMultYResultName()));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riMultZResultName()));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedRiAreaNormTranResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riAreaNormTranXResultName()));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riAreaNormTranYResultName()));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riAreaNormTranZResultName()));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedWaterFluxResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRWATI+"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRWATJ+"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRWATK+"));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedOilFluxResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLROILI+"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLROILJ+"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLROILK+"));
statisticsCalculator = calc;
}
else if (resultName == RiaDefines::combinedGasFluxResultName())
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRGASI+"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRGASJ+"));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRGASK+"));
statisticsCalculator = calc;
}
else if (resultName.endsWith("IJK"))
{
cvf::ref<RigEclipseMultiPropertyStatCalc> calc = new RigEclipseMultiPropertyStatCalc();
QString baseName = resultName.left(resultName.size() - 3);
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::GENERATED, QString("%1I").arg(baseName)));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::GENERATED, QString("%1J").arg(baseName)));
calc->addNativeStatisticsCalculator(this, findScalarResultIndex(RiaDefines::GENERATED, QString("%1K").arg(baseName)));
statisticsCalculator = calc;
}
else
{
statisticsCalculator = new RigEclipseNativeStatCalc(this, scalarResultIndex);
}
cvf::ref<RigStatisticsDataCache> dataCache = new RigStatisticsDataCache(statisticsCalculator.p());
m_statisticsDataCache.push_back(dataCache.p());
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RigCaseCellResultsData::resultNames(RiaDefines::ResultCatType resType) const
{
QStringList varList;
std::vector<RigEclipseResultInfo>::const_iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); ++it)
{
if (it->m_resultType == resType )
{
varList.push_back(it->m_resultName);
}
}
return varList;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::recalculateStatistics(size_t scalarResultIndex)
{
m_statisticsDataCache[scalarResultIndex]->clearAllStatistics();
}
//--------------------------------------------------------------------------------------------------
/// Returns whether the result data in question is addressed by Active Cell Index
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::isUsingGlobalActiveIndex(size_t scalarResultIndex) const
{
CVF_TIGHT_ASSERT(scalarResultIndex < m_cellScalarResults.size());
if (!m_cellScalarResults[scalarResultIndex].size()) return true;
size_t firstTimeStepResultValueCount = m_cellScalarResults[scalarResultIndex][0].size();
if (firstTimeStepResultValueCount == m_ownerMainGrid->globalCellArray().size()) return false;
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::hasFlowDiagUsableFluxes() const
{
QStringList dynResVarNames = resultNames(RiaDefines::DYNAMIC_NATIVE);
bool hasFlowFluxes = true;
hasFlowFluxes = dynResVarNames.contains("FLRWATI+");
hasFlowFluxes = hasFlowFluxes && dynResVarNames.contains("FLROILI+") || dynResVarNames.contains("FLRGASI+");
return hasFlowFluxes;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QDateTime RigCaseCellResultsData::timeStepDate(size_t scalarResultIndex, size_t timeStepIndex) const
{
if (scalarResultIndex < m_resultInfos.size() && m_resultInfos[scalarResultIndex].m_timeStepInfos.size() > timeStepIndex)
return m_resultInfos[scalarResultIndex].m_timeStepInfos[timeStepIndex].m_date;
else
return QDateTime();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QDateTime> RigCaseCellResultsData::timeStepDates(size_t scalarResultIndex) const
{
if (scalarResultIndex < m_resultInfos.size())
{
return m_resultInfos[scalarResultIndex].dates();
}
else
return std::vector<QDateTime>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QDateTime> RigCaseCellResultsData::timeStepDates() const
{
size_t scalarResWithMostTimeSteps = cvf::UNDEFINED_SIZE_T;
maxTimeStepCount(&scalarResWithMostTimeSteps);
return timeStepDates(scalarResWithMostTimeSteps);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigCaseCellResultsData::daysSinceSimulationStart() const
{
size_t scalarResWithMostTimeSteps = cvf::UNDEFINED_SIZE_T;
maxTimeStepCount(&scalarResWithMostTimeSteps);
return daysSinceSimulationStart(scalarResWithMostTimeSteps);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RigCaseCellResultsData::daysSinceSimulationStart(size_t scalarResultIndex) const
{
if (scalarResultIndex < m_resultInfos.size())
{
return m_resultInfos[scalarResultIndex].daysSinceSimulationStarts();
}
else
{
return std::vector<double>();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
int RigCaseCellResultsData::reportStepNumber(size_t scalarResultIndex, size_t timeStepIndex) const
{
if (scalarResultIndex < m_resultInfos.size() && m_resultInfos[scalarResultIndex].m_timeStepInfos.size() > timeStepIndex)
return m_resultInfos[scalarResultIndex].m_timeStepInfos[timeStepIndex].m_reportNumber;
else
return -1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<int> RigCaseCellResultsData::reportStepNumbers(size_t scalarResultIndex) const
{
if (scalarResultIndex < m_resultInfos.size() )
return m_resultInfos[scalarResultIndex].reportNumbers();
else
return std::vector<int>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigEclipseTimeStepInfo> RigCaseCellResultsData::timeStepInfos(size_t scalarResultIndex) const
{
if (scalarResultIndex < m_resultInfos.size())
return m_resultInfos[scalarResultIndex].m_timeStepInfos;
else
return std::vector<RigEclipseTimeStepInfo>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::setTimeStepInfos(size_t scalarResultIndex, const std::vector<RigEclipseTimeStepInfo>& timeStepInfos)
{
CVF_ASSERT(scalarResultIndex < m_resultInfos.size() );
m_resultInfos[scalarResultIndex].m_timeStepInfos = timeStepInfos;
std::vector< std::vector<double> >& dataValues = this->cellScalarResults(scalarResultIndex);
dataValues.resize(timeStepInfos.size());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::maxTimeStepCount(size_t* scalarResultIndexWithMostTimeSteps) const
{
size_t maxTsCount = 0;
size_t scalarResultIndexWithMaxTsCount = cvf::UNDEFINED_SIZE_T;
for (size_t i = 0; i < m_resultInfos.size(); i++)
{
if (m_resultInfos[i].m_timeStepInfos.size() > maxTsCount)
{
maxTsCount = m_resultInfos[i].m_timeStepInfos.size();
scalarResultIndexWithMaxTsCount = i;
}
}
if (scalarResultIndexWithMostTimeSteps)
{
*scalarResultIndexWithMostTimeSteps = scalarResultIndexWithMaxTsCount;
}
return maxTsCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RigCaseCellResultsData::makeResultNameUnique(const QString& resultNameProposal) const
{
QString newResultName = resultNameProposal;
size_t resultIndex = cvf::UNDEFINED_SIZE_T;
int nameNum = 1;
int stringLength = newResultName.size();
while (true)
{
resultIndex = this->findScalarResultIndex(newResultName);
if (resultIndex == cvf::UNDEFINED_SIZE_T) break;
newResultName.truncate(stringLength);
newResultName += "_" + QString::number(nameNum);
++nameNum;
}
return newResultName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::removeResult(const QString& resultName)
{
size_t resultIdx = findScalarResultIndex(resultName);
if (resultIdx == cvf::UNDEFINED_SIZE_T) return;
m_cellScalarResults[resultIdx].clear();
m_resultInfos[resultIdx].m_resultType = RiaDefines::REMOVED;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::clearAllResults()
{
m_cellScalarResults.clear();
m_resultInfos.clear();
m_statisticsDataCache.clear();
}
//--------------------------------------------------------------------------------------------------
/// Removes all the actual numbers put into this object, and frees up the memory.
/// Does not touch the metadata in any way
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::freeAllocatedResultsData()
{
for (size_t resultIdx = 0; resultIdx < m_cellScalarResults.size(); ++resultIdx)
{
for (size_t tsIdx = 0; tsIdx < m_cellScalarResults[resultIdx].size(); ++tsIdx)
{
// Using swap with an empty vector as that is the safest way to really get rid of the allocated data in a vector
std::vector<double> empty;
m_cellScalarResults[resultIdx][tsIdx].swap(empty);
}
}
}
//--------------------------------------------------------------------------------------------------
/// Make sure we have a result with given type and name, and make sure one "timestep" result vector
// for the static result values are allocated
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::addStaticScalarResult(RiaDefines::ResultCatType type, const QString& resultName, bool needsToBeStored, size_t resultValueCount)
{
size_t resultIdx = findOrCreateScalarResultIndex(type, resultName, needsToBeStored);
m_cellScalarResults[resultIdx].resize(1, std::vector<double>());
m_cellScalarResults[resultIdx][0].resize(resultValueCount, HUGE_VAL);
return resultIdx;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::updateResultName(RiaDefines::ResultCatType resultType, QString& oldName, const QString& newName)
{
bool anyNameUpdated = false;
for (auto& it : m_resultInfos)
{
if (it.m_resultType == resultType && it.m_resultName == oldName)
{
anyNameUpdated = true;
it.m_resultName = newName;
}
}
return anyNameUpdated;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::mustBeCalculated(size_t scalarResultIndex) const
{
std::vector<RigEclipseResultInfo>::const_iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); ++it)
{
if (it->m_gridScalarResultIndex == scalarResultIndex)
{
return it->m_mustBeCalculated;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::setMustBeCalculated(size_t scalarResultIndex)
{
std::vector<RigEclipseResultInfo>::iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); ++it)
{
if (it->m_gridScalarResultIndex == scalarResultIndex)
{
it->m_mustBeCalculated = true;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::eraseAllSourSimData()
{
std::vector<size_t> sourSimIndices;
for (size_t i = 0; i < m_resultInfos.size(); i++)
{
RigEclipseResultInfo& ri = m_resultInfos[i];
if (ri.m_resultType == RiaDefines::SOURSIMRL)
{
ri.m_resultType = RiaDefines::REMOVED;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::createPlaceholderResultEntries()
{
// SOIL
{
size_t soilIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "SOIL");
if (soilIndex == cvf::UNDEFINED_SIZE_T)
{
size_t swatIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "SWAT");
size_t sgasIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "SGAS");
if (swatIndex != cvf::UNDEFINED_SIZE_T || sgasIndex != cvf::UNDEFINED_SIZE_T)
{
soilIndex = findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "SOIL", false);
this->setMustBeCalculated(soilIndex);
}
}
}
// Completion type
{
size_t completionTypeIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::completionTypeResultName());
if (completionTypeIndex == cvf::UNDEFINED_SIZE_T)
{
findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::completionTypeResultName(), false);
}
}
// FLUX
{
size_t waterIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::combinedWaterFluxResultName());
if (waterIndex == cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRWATI+") != cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRWATJ+") != cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRWATK+") != cvf::UNDEFINED_SIZE_T)
{
findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::combinedWaterFluxResultName(), false);
}
size_t oilIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::combinedOilFluxResultName());
if (oilIndex == cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLROILI+") != cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLROILJ+") != cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLROILK+") != cvf::UNDEFINED_SIZE_T)
{
findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::combinedOilFluxResultName(), false);
}
size_t gasIndex = findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::combinedGasFluxResultName());
if (gasIndex == cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRGASI+") != cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRGASJ+") != cvf::UNDEFINED_SIZE_T &&
findScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, "FLRGASK+") != cvf::UNDEFINED_SIZE_T)
{
findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, RiaDefines::combinedGasFluxResultName(), false);
}
}
// TRANSXYZ
{
size_t tranX, tranY, tranZ;
if (findTransmissibilityResults(tranX, tranY, tranZ))
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::combinedTransmissibilityResultName(), false, 0);
}
}
// MULTXYZ
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::combinedMultResultName(), false, 0);
}
// riTRANSXYZ and X,Y,Z
{
if ( findScalarResultIndex(RiaDefines::STATIC_NATIVE, "PERMX") != cvf::UNDEFINED_SIZE_T
&& findScalarResultIndex(RiaDefines::STATIC_NATIVE, "PERMY") != cvf::UNDEFINED_SIZE_T
&& findScalarResultIndex(RiaDefines::STATIC_NATIVE, "PERMZ") != cvf::UNDEFINED_SIZE_T)
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riTranXResultName(), false, 0);
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riTranYResultName(), false, 0);
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riTranZResultName(), false, 0);
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::combinedRiTranResultName(), false, 0);
}
}
// riMULTXYZ and X, Y, Z
{
size_t tranX, tranY, tranZ;
if (findTransmissibilityResults(tranX, tranY, tranZ)
&& findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riTranXResultName()) != cvf::UNDEFINED_SIZE_T
&& findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riTranYResultName()) != cvf::UNDEFINED_SIZE_T
&& findScalarResultIndex(RiaDefines::STATIC_NATIVE, RiaDefines::riTranZResultName()) != cvf::UNDEFINED_SIZE_T)
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riMultXResultName(), false, 0);
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riMultYResultName(), false, 0);
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riMultZResultName(), false, 0);
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::combinedRiMultResultName(), false, 0);
}
}
// riTRANSXYZbyArea and X, Y, Z
{
if (findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANX") != cvf::UNDEFINED_SIZE_T)
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riAreaNormTranXResultName(), false, 0);
}
if (findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANY") != cvf::UNDEFINED_SIZE_T)
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riAreaNormTranYResultName(), false, 0);
}
if (findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANZ") != cvf::UNDEFINED_SIZE_T)
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::riAreaNormTranZResultName(), false, 0);
}
size_t tranX, tranY, tranZ;
if (findTransmissibilityResults(tranX, tranY, tranZ))
{
addStaticScalarResult(RiaDefines::STATIC_NATIVE, RiaDefines::combinedRiAreaNormTranResultName(), false, 0);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::findTransmissibilityResults(size_t& tranX, size_t& tranY, size_t& tranZ) const
{
tranX = findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANX");
tranY = findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANY");
tranZ = findScalarResultIndex(RiaDefines::STATIC_NATIVE, "TRANZ");
if (tranX == cvf::UNDEFINED_SIZE_T ||
tranY == cvf::UNDEFINED_SIZE_T ||
tranZ == cvf::UNDEFINED_SIZE_T)
{
return false;
}
return true;
}