ResInsight/ApplicationCode/ReservoirDataModel/RigEclipseToStimPlanCellTransmissibilityCalculator.cpp

250 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RigActiveCellInfo.h"
#include "RigCellGeometryTools.h"
#include "RigEclipseCaseData.h"
#include "RigFractureCell.h"
#include "RigFractureTransmissibilityEquations.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigHexIntersectionTools.h"
#include "RimEclipseCase.h"
#include "RimReservoirCellResultsStorage.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseToStimPlanCellTransmissibilityCalculator::RigEclipseToStimPlanCellTransmissibilityCalculator(RimEclipseCase* caseToApply,
cvf::Mat4d fractureTransform,
double skinFactor,
double cDarcy,
const RigFractureCell& stimPlanCell)
: m_case(caseToApply),
m_fractureTransform(fractureTransform),
m_fractureSkinFactor(skinFactor),
m_cDarcy(cDarcy),
m_stimPlanCell(stimPlanCell)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigEclipseToStimPlanCellTransmissibilityCalculator::globalIndeciesToContributingEclipseCells()
{
if (m_globalIndeciesToContributingEclipseCells.size() < 1)
{
calculateStimPlanCellsMatrixTransmissibility();
}
return m_globalIndeciesToContributingEclipseCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigEclipseToStimPlanCellTransmissibilityCalculator::contributingEclipseCellTransmissibilities()
{
if (m_globalIndeciesToContributingEclipseCells.size() < 1)
{
calculateStimPlanCellsMatrixTransmissibility();
}
return m_contributingEclipseCellTransmissibilities;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsMatrixTransmissibility()
{
// Not calculating flow into fracture if stimPlan cell cond value is 0 (assumed to be outside the fracture):
if (m_stimPlanCell.getConductivtyValue() < 1e-7) return;
const RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData();
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
cvf::ref<RigResultAccessor> dataAccessObjectDx = loadResultAndCreateResultAccessor(m_case, porosityModel, "DX");
cvf::ref<RigResultAccessor> dataAccessObjectDy = loadResultAndCreateResultAccessor(m_case, porosityModel, "DY");
cvf::ref<RigResultAccessor> dataAccessObjectDz = loadResultAndCreateResultAccessor(m_case, porosityModel, "DZ");
cvf::ref<RigResultAccessor> dataAccessObjectPermX = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMX");
cvf::ref<RigResultAccessor> dataAccessObjectPermY = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMY");
cvf::ref<RigResultAccessor> dataAccessObjectPermZ = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMZ");
cvf::ref<RigResultAccessor> dataAccessObjectNTG = loadResultAndCreateResultAccessor(m_case, porosityModel, "NTG");
const RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel);
std::vector<cvf::Vec3d> stimPlanPolygonTransformed;
for (cvf::Vec3d v : m_stimPlanCell.getPolygon())
{
v.transformPoint(m_fractureTransform);
stimPlanPolygonTransformed.push_back(v);
}
std::vector<size_t> fracCells = getPotentiallyFracturedCellsForPolygon(stimPlanPolygonTransformed);
for (size_t fracCell : fracCells)
{
bool cellIsActive = activeCellInfo->isActive(fracCell);
if (!cellIsActive) continue;
double permX = dataAccessObjectPermX->cellScalarGlobIdx(fracCell);
double permY = dataAccessObjectPermY->cellScalarGlobIdx(fracCell);
double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(fracCell);
double dx = dataAccessObjectDx->cellScalarGlobIdx(fracCell);
double dy = dataAccessObjectDy->cellScalarGlobIdx(fracCell);
double dz = dataAccessObjectDz->cellScalarGlobIdx(fracCell);
double NTG = 1.0;
if (dataAccessObjectNTG.notNull())
{
NTG = dataAccessObjectNTG->cellScalarGlobIdx(fracCell);
}
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
std::array<cvf::Vec3d, 8> hexCorners;
mainGrid->cellCornerVertices(fracCell, hexCorners.data());
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
bool isPlanIntersected = RigHexIntersectionTools::planeHexIntersectionPolygons(hexCorners, m_fractureTransform, planeCellPolygons);
if (!isPlanIntersected || planeCellPolygons.size() == 0) continue;
cvf::Vec3d localX;
cvf::Vec3d localY;
cvf::Vec3d localZ;
RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ);
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
cvf::Mat4d invertedTransMatrix = m_fractureTransform.getInverted();
for (std::vector<cvf::Vec3d> & planeCellPolygon : planeCellPolygons)
{
for (cvf::Vec3d& v : planeCellPolygon)
{
v.transformPoint(invertedTransMatrix);
}
}
std::vector<std::vector<cvf::Vec3d> > polygonsForStimPlanCellInEclipseCell;
cvf::Vec3d areaVector;
std::vector<cvf::Vec3d> stimPlanPolygon = m_stimPlanCell.getPolygon();
for (std::vector<cvf::Vec3d> planeCellPolygon : planeCellPolygons)
{
std::vector<std::vector<cvf::Vec3d> >clippedPolygons = RigCellGeometryTools::intersectPolygons(planeCellPolygon, stimPlanPolygon);
for (std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons)
{
polygonsForStimPlanCellInEclipseCell.push_back(clippedPolygon);
}
}
if (polygonsForStimPlanCellInEclipseCell.size() == 0) continue;
double area;
std::vector<double> areaOfFractureParts;
double length;
std::vector<double> lengthXareaOfFractureParts;
double Ax = 0.0, Ay = 0.0, Az = 0.0;
for (std::vector<cvf::Vec3d> fracturePartPolygon : polygonsForStimPlanCellInEclipseCell)
{
areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon);
area = areaVector.length();
areaOfFractureParts.push_back(area);
length = RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea(fracturePartPolygon);
lengthXareaOfFractureParts.push_back(length * area);
cvf::Plane fracturePlane;
bool isCellIntersected = false;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m_fractureTransform.translation()),
static_cast<cvf::Vec3d>(m_fractureTransform.col(2)));
Ax += abs(area*(fracturePlane.normal().dot(localY)));
Ay += abs(area*(fracturePlane.normal().dot(localX)));
Az += abs(area*(fracturePlane.normal().dot(localZ)));
}
double fractureArea = 0.0;
for (double area : areaOfFractureParts) fractureArea += area;
double totalAreaXLength = 0.0;
for (double lengtXarea : lengthXareaOfFractureParts) totalAreaXLength += lengtXarea;
double fractureAreaWeightedlength = totalAreaXLength / fractureArea;
double transmissibility_X = RigFractureTransmissibilityEquations::matrixToFractureTrans(permY, NTG, Ay, dx, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
double transmissibility_Y = RigFractureTransmissibilityEquations::matrixToFractureTrans(permX, NTG, Ax, dy, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
double transmissibility_Z = RigFractureTransmissibilityEquations::matrixToFractureTrans(permZ, 1.0, Az, dz, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
double transmissibility = sqrt(transmissibility_X * transmissibility_X
+ transmissibility_Y * transmissibility_Y
+ transmissibility_Z * transmissibility_Z);
m_globalIndeciesToContributingEclipseCells.push_back(fracCell);
m_contributingEclipseCellTransmissibilities.push_back(transmissibility);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigEclipseToStimPlanCellTransmissibilityCalculator::getPotentiallyFracturedCellsForPolygon(std::vector<cvf::Vec3d> polygon)
{
std::vector<size_t> cellIndices;
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
if (!mainGrid) return cellIndices;
cvf::BoundingBox polygonBBox;
for (cvf::Vec3d nodeCoord : polygon) polygonBBox.add(nodeCoord);
mainGrid->findIntersectingCells(polygonBBox, &cellIndices);
return cellIndices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigResultAccessor> RigEclipseToStimPlanCellTransmissibilityCalculator::loadResultAndCreateResultAccessor(
RimEclipseCase* eclipseCase,
RiaDefines::PorosityModelType porosityModel,
const QString& uiResultName)
{
CVF_ASSERT(eclipseCase);
RimReservoirCellResultsStorage* gridCellResults = eclipseCase->results(porosityModel);
// Calling this function will force loading of result from file
gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, uiResultName);
const RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
// Create result accessor object for main grid at time step zero (static result date is always at first time step
return RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, uiResultName);
}