mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-24 23:36:50 -06:00
248 lines
12 KiB
C++
248 lines
12 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2017 Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigCellGeometryTools.h"
|
|
#include "RigEclipseCaseData.h"
|
|
#include "RigFractureCell.h"
|
|
#include "RigFractureTransmissibilityEquations.h"
|
|
#include "RigMainGrid.h"
|
|
#include "RigResultAccessorFactory.h"
|
|
#include "RigHexIntersectionTools.h"
|
|
|
|
#include "RimEclipseCase.h"
|
|
|
|
#include "cvfGeometryTools.h"
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigEclipseToStimPlanCellTransmissibilityCalculator::RigEclipseToStimPlanCellTransmissibilityCalculator(RimEclipseCase* caseToApply,
|
|
cvf::Mat4d fractureTransform,
|
|
double skinFactor,
|
|
double cDarcy,
|
|
const RigFractureCell& stimPlanCell)
|
|
: m_case(caseToApply),
|
|
m_fractureTransform(fractureTransform),
|
|
m_fractureSkinFactor(skinFactor),
|
|
m_cDarcy(cDarcy),
|
|
m_stimPlanCell(stimPlanCell)
|
|
{
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const std::vector<size_t>& RigEclipseToStimPlanCellTransmissibilityCalculator::globalIndeciesToContributingEclipseCells()
|
|
{
|
|
if (m_globalIndeciesToContributingEclipseCells.size() < 1)
|
|
{
|
|
calculateStimPlanCellsMatrixTransmissibility();
|
|
}
|
|
|
|
return m_globalIndeciesToContributingEclipseCells;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const std::vector<double>& RigEclipseToStimPlanCellTransmissibilityCalculator::contributingEclipseCellTransmissibilities()
|
|
{
|
|
if (m_globalIndeciesToContributingEclipseCells.size() < 1)
|
|
{
|
|
calculateStimPlanCellsMatrixTransmissibility();
|
|
}
|
|
|
|
return m_contributingEclipseCellTransmissibilities;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsMatrixTransmissibility()
|
|
{
|
|
// Not calculating flow into fracture if stimPlan cell cond value is 0 (assumed to be outside the fracture):
|
|
if (m_stimPlanCell.getConductivtyValue() < 1e-7) return;
|
|
|
|
const RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData();
|
|
|
|
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
|
|
|
|
cvf::ref<RigResultAccessor> dataAccessObjectDx = loadResultAndCreateResultAccessor(m_case, porosityModel, "DX");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectDy = loadResultAndCreateResultAccessor(m_case, porosityModel, "DY");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectDz = loadResultAndCreateResultAccessor(m_case, porosityModel, "DZ");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectPermX = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMX");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectPermY = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMY");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectPermZ = loadResultAndCreateResultAccessor(m_case, porosityModel, "PERMZ");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectNTG = loadResultAndCreateResultAccessor(m_case, porosityModel, "NTG");
|
|
|
|
const RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel);
|
|
|
|
std::vector<cvf::Vec3d> stimPlanPolygonTransformed;
|
|
for (cvf::Vec3d v : m_stimPlanCell.getPolygon())
|
|
{
|
|
v.transformPoint(m_fractureTransform);
|
|
stimPlanPolygonTransformed.push_back(v);
|
|
}
|
|
|
|
std::vector<size_t> fracCells = getPotentiallyFracturedCellsForPolygon(stimPlanPolygonTransformed);
|
|
for (size_t fracCell : fracCells)
|
|
{
|
|
bool cellIsActive = activeCellInfo->isActive(fracCell);
|
|
if (!cellIsActive) continue;
|
|
|
|
double permX = dataAccessObjectPermX->cellScalarGlobIdx(fracCell);
|
|
double permY = dataAccessObjectPermY->cellScalarGlobIdx(fracCell);
|
|
double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(fracCell);
|
|
|
|
double dx = dataAccessObjectDx->cellScalarGlobIdx(fracCell);
|
|
double dy = dataAccessObjectDy->cellScalarGlobIdx(fracCell);
|
|
double dz = dataAccessObjectDz->cellScalarGlobIdx(fracCell);
|
|
|
|
double NTG = 1.0;
|
|
if (dataAccessObjectNTG.notNull())
|
|
{
|
|
NTG = dataAccessObjectNTG->cellScalarGlobIdx(fracCell);
|
|
}
|
|
|
|
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
|
|
std::array<cvf::Vec3d, 8> hexCorners;
|
|
mainGrid->cellCornerVertices(fracCell, hexCorners.data());
|
|
|
|
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
|
|
bool isPlanIntersected = RigHexIntersectionTools::planeHexIntersectionPolygons(hexCorners, m_fractureTransform, planeCellPolygons);
|
|
if (!isPlanIntersected || planeCellPolygons.size() == 0) continue;
|
|
|
|
cvf::Vec3d localX;
|
|
cvf::Vec3d localY;
|
|
cvf::Vec3d localZ;
|
|
RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ);
|
|
|
|
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
|
|
cvf::Mat4d invertedTransMatrix = m_fractureTransform.getInverted();
|
|
for (std::vector<cvf::Vec3d> & planeCellPolygon : planeCellPolygons)
|
|
{
|
|
for (cvf::Vec3d& v : planeCellPolygon)
|
|
{
|
|
v.transformPoint(invertedTransMatrix);
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<cvf::Vec3d> > polygonsForStimPlanCellInEclipseCell;
|
|
cvf::Vec3d areaVector;
|
|
std::vector<cvf::Vec3d> stimPlanPolygon = m_stimPlanCell.getPolygon();
|
|
|
|
for (std::vector<cvf::Vec3d> planeCellPolygon : planeCellPolygons)
|
|
{
|
|
std::vector<std::vector<cvf::Vec3d> >clippedPolygons = RigCellGeometryTools::intersectPolygons(planeCellPolygon, stimPlanPolygon);
|
|
for (std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons)
|
|
{
|
|
polygonsForStimPlanCellInEclipseCell.push_back(clippedPolygon);
|
|
}
|
|
}
|
|
|
|
if (polygonsForStimPlanCellInEclipseCell.size() == 0) continue;
|
|
|
|
double area;
|
|
std::vector<double> areaOfFractureParts;
|
|
double length;
|
|
std::vector<double> lengthXareaOfFractureParts;
|
|
double Ax = 0.0, Ay = 0.0, Az = 0.0;
|
|
|
|
for (std::vector<cvf::Vec3d> fracturePartPolygon : polygonsForStimPlanCellInEclipseCell)
|
|
{
|
|
areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon);
|
|
area = areaVector.length();
|
|
areaOfFractureParts.push_back(area);
|
|
|
|
length = RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea(fracturePartPolygon);
|
|
lengthXareaOfFractureParts.push_back(length * area);
|
|
|
|
cvf::Plane fracturePlane;
|
|
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m_fractureTransform.translation()),
|
|
static_cast<cvf::Vec3d>(m_fractureTransform.col(2)));
|
|
|
|
Ax += fabs(area*(fracturePlane.normal().dot(localY)));
|
|
Ay += fabs(area*(fracturePlane.normal().dot(localX)));
|
|
Az += fabs(area*(fracturePlane.normal().dot(localZ)));
|
|
}
|
|
|
|
double fractureArea = 0.0;
|
|
for (double area : areaOfFractureParts) fractureArea += area;
|
|
|
|
double totalAreaXLength = 0.0;
|
|
for (double lengtXarea : lengthXareaOfFractureParts) totalAreaXLength += lengtXarea;
|
|
|
|
double fractureAreaWeightedlength = totalAreaXLength / fractureArea;
|
|
|
|
double transmissibility_X = RigFractureTransmissibilityEquations::matrixToFractureTrans(permY, NTG, Ay, dx, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
|
|
double transmissibility_Y = RigFractureTransmissibilityEquations::matrixToFractureTrans(permX, NTG, Ax, dy, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
|
|
double transmissibility_Z = RigFractureTransmissibilityEquations::matrixToFractureTrans(permZ, 1.0, Az, dz, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
|
|
|
|
double transmissibility = sqrt(transmissibility_X * transmissibility_X
|
|
+ transmissibility_Y * transmissibility_Y
|
|
+ transmissibility_Z * transmissibility_Z);
|
|
|
|
|
|
m_globalIndeciesToContributingEclipseCells.push_back(fracCell);
|
|
m_contributingEclipseCellTransmissibilities.push_back(transmissibility);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<size_t> RigEclipseToStimPlanCellTransmissibilityCalculator::getPotentiallyFracturedCellsForPolygon(std::vector<cvf::Vec3d> polygon)
|
|
{
|
|
std::vector<size_t> cellIndices;
|
|
|
|
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
|
|
if (!mainGrid) return cellIndices;
|
|
|
|
cvf::BoundingBox polygonBBox;
|
|
for (cvf::Vec3d nodeCoord : polygon) polygonBBox.add(nodeCoord);
|
|
|
|
mainGrid->findIntersectingCells(polygonBBox, &cellIndices);
|
|
|
|
return cellIndices;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::ref<RigResultAccessor> RigEclipseToStimPlanCellTransmissibilityCalculator::loadResultAndCreateResultAccessor(
|
|
RimEclipseCase* eclipseCase,
|
|
RiaDefines::PorosityModelType porosityModel,
|
|
const QString& uiResultName)
|
|
{
|
|
CVF_ASSERT(eclipseCase);
|
|
|
|
RigCaseCellResultsData* gridCellResults = eclipseCase->results(porosityModel);
|
|
|
|
// Calling this function will force loading of result from file
|
|
gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, uiResultName);
|
|
|
|
const RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
|
|
|
|
// Create result accessor object for main grid at time step zero (static result date is always at first time step
|
|
return RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, uiResultName);
|
|
}
|