ResInsight/ApplicationCode/ReservoirDataModel/RigFlowDiagResults.h
2017-08-29 16:21:19 +02:00

153 lines
9.4 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2016- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RigFlowDiagResultAddress.h"
#include "RigFlowDiagSolverInterface.h"
#include "RimFlowDiagSolution.h"
#include "cafPdmPointer.h"
#include "cafAppEnum.h"
#include "cvfBase.h"
#include "cvfObject.h"
#include "cvfArray.h"
#include <vector>
#include <map>
#include <string>
class RigFlowDiagResultFrames;
class RigStatisticsDataCache;
class RigActiveCellInfo;
class RigFlowDiagResults: public cvf::Object
{
public:
enum CellFilter
{
CELLS_ACTIVE,
CELLS_VISIBLE,
CELLS_COMMUNICATION,
CELLS_FLOODED,
CELLS_DRAINED,
};
typedef caf::AppEnum<CellFilter> CellFilterEnum;
public:
RigFlowDiagResults(RimFlowDiagSolution* flowSolution, size_t timeStepCount);
virtual ~RigFlowDiagResults();
const std::vector<double>* resultValues(const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
size_t timeStepCount() { return m_timeStepCount; }
const RigActiveCellInfo * activeCellInfo(const RigFlowDiagResultAddress& resVarAddr);
void minMaxScalarValues (const RigFlowDiagResultAddress& resVarAddr, int frameIndex, double* localMin, double* localMax);
void minMaxScalarValues (const RigFlowDiagResultAddress& resVarAddr, double* globalMin, double* globalMax);
void posNegClosestToZero(const RigFlowDiagResultAddress& resVarAddr, int frameIndex, double* localPosClosestToZero, double* localNegClosestToZero);
void posNegClosestToZero(const RigFlowDiagResultAddress& resVarAddr, double* globalPosClosestToZero, double* globalNegClosestToZero);
void meanScalarValue(const RigFlowDiagResultAddress& resVarAddr, double* meanValue);
void meanScalarValue(const RigFlowDiagResultAddress& resVarAddr, int frameIndex, double* meanValue);
void p10p90ScalarValues(const RigFlowDiagResultAddress& resVarAddr, double* p10, double* p90);
void p10p90ScalarValues(const RigFlowDiagResultAddress& resVarAddr, int frameIndex, double* p10, double* p90);
void sumScalarValue(const RigFlowDiagResultAddress& resVarAddr, double* sum);
void sumScalarValue(const RigFlowDiagResultAddress& resVarAddr, int frameIndex, double* sum);
const std::vector<size_t>& scalarValuesHistogram(const RigFlowDiagResultAddress& resVarAddr);
const std::vector<size_t>& scalarValuesHistogram(const RigFlowDiagResultAddress& resVarAddr, int frameIndex);
const std::vector<int>& uniqueCellScalarValues(const RigFlowDiagResultAddress& resVarAddr);
const std::vector<int>& uniqueCellScalarValues(const RigFlowDiagResultAddress& resVarAddr, int frameIndex);
std::pair<double, double> injectorProducerPairFluxes(const std::string& injTracername, const std::string& prodTracerName, int frameIndex);
double maxAbsPairFlux(int frameIndex);
std::vector<int> calculatedTimeSteps(RigFlowDiagResultAddress::PhaseSelection phaseSelection);
RigFlowDiagSolverInterface::FlowCharacteristicsResultFrame flowCharacteristicsResults(int frameIndex,
CellFilter cellSelection,
const std::vector<QString>& tracerNames,
double max_pv_fraction,
double minCommunication,
int maxTof);
RigFlowDiagSolverInterface::FlowCharacteristicsResultFrame flowCharacteristicsResults(int frameIndex,
const std::vector<char>& visibleActiveCells,
double max_pv_fraction);
private:
const std::vector<double>* findOrCalculateResult (const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
void calculateNativeResultsIfNotPreviouslyAttempted(size_t frameIndex, RigFlowDiagResultAddress::PhaseSelection phaseSelection);
std::vector<double>* calculateDerivedResult(const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
std::vector<double>* calculateAverageTOFResult(const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
std::vector<double>* calculateSumOfFractionsResult(const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
std::vector<double>* calculateTracerWithMaxFractionResult(const RigFlowDiagResultAddress &resVarAddr, size_t frameIndex);
std::vector<double>* calculateCommunicationResult(const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
std::vector<const std::vector<double>* > findResultsForSelectedTracers(const RigFlowDiagResultAddress& resVarAddr,
size_t frameIndex,
const std::string& nativeResultName,
RimFlowDiagSolution::TracerStatusType wantedTracerType);
std::vector< std::pair<std::string, const std::vector<double>*> >
findNamedResultsForSelectedTracers(const RigFlowDiagResultAddress& resVarAddr,
size_t frameIndex,
const std::string& nativeResultName,
RimFlowDiagSolution::TracerStatusType wantedTracerType);
void calculateSumOfFractionAndFractionMultTOF(size_t activeCellCount,
const std::vector<const std::vector<double> *>& injectorFractions,
const std::vector<const std::vector<double> *>& injectorTOFs,
std::vector<double> *injectorTotalFractions,
std::vector<double> *injectorFractMultTof);
void calculateSumOfFractions(const std::vector<const std::vector<double> *> &fractions,
size_t activeCellCount,
std::vector<double>* sumOfFractions);
RigStatisticsDataCache* statistics(const RigFlowDiagResultAddress& resVarAddr);
RigFlowDiagResultFrames* createScalarResult(const RigFlowDiagResultAddress& resVarAddr);
RigFlowDiagResultFrames* findScalarResult (const RigFlowDiagResultAddress& resVarAddr) ;
std::vector<double>* findScalarResultFrame (const RigFlowDiagResultAddress& resVarAddr, size_t frameIndex);
//void deleteScalarResult(const RigFlowDiagResultAddress& resVarAddr);
RigFlowDiagSolverInterface* solverInterface();
size_t m_timeStepCount;
caf::PdmPointer<RimFlowDiagSolution> m_flowDiagSolution;
std::vector< std::map<RigFlowDiagResultAddress::PhaseSelection, bool > > m_hasAtemptedNativeResults;
std::map< RigFlowDiagResultAddress, cvf::ref<RigFlowDiagResultFrames> > m_resultSets;
std::map< RigFlowDiagResultAddress, cvf::ref<RigStatisticsDataCache> > m_resultStatistics;
using InjectorProducerCommunicationMap = std::map< std::pair<std::string, std::string>, std::pair<double, double> >;
std::vector< std::map<RigFlowDiagResultAddress::PhaseSelection, InjectorProducerCommunicationMap> > m_injProdPairFluxCommunicationTimesteps;
};