ResInsight/ApplicationLibCode/ModelVisualization/Riv3dWellLogDrawSurfaceGenerator.cpp
2023-09-13 08:29:15 +02:00

319 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "Riv3dWellLogDrawSurfaceGenerator.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "cafDisplayCoordTransform.h"
#include "cvfArrowGenerator.h"
#include "cvfBoundingBox.h"
#include "cvfGeometryBuilderTriangles.h"
#include "cvfObject.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include <algorithm>
#include <map>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Riv3dWellLogDrawSurfaceGenerator::Riv3dWellLogDrawSurfaceGenerator( RimWellPath* wellPath )
: m_wellPath( wellPath )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool Riv3dWellLogDrawSurfaceGenerator::createDrawSurface( const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
double planeAngle,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize )
{
CVF_ASSERT( samplingIntervalSize > 0 );
clearGeometry();
if ( !wellPathGeometry() || wellPathGeometry()->measuredDepths().empty() )
{
return false;
}
if ( !wellPathClipBoundingBox.isValid() )
{
return false;
}
auto wellPathCollection = m_wellPath->firstAncestorOrThisOfTypeAsserted<RimWellPathCollection>();
std::vector<cvf::Vec3d> wellPathDisplayCoords;
{
const std::vector<cvf::Vec3d>& domainCoords = wellPathGeometry()->wellPathPoints();
if ( domainCoords.size() < (size_t)2 )
{
// Need at least two well path points to create a valid path.
return false;
}
wellPathDisplayCoords = displayCoordTransform->transformToDisplayCoords( domainCoords );
}
std::vector<cvf::Vec3d> wellPathSegmentNormals = RigWellPathGeometryTools::calculateLineSegmentNormals( wellPathDisplayCoords, planeAngle );
size_t indexToFirstVisibleSegment = 0u;
if ( wellPathCollection->wellPathClip )
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
cvf::Vec3d clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d::Z_AXIS;
auto clipLocationDisplay = displayCoordTransform->transformToDisplayCoord( clipLocation );
double horizontalLengthAlongWellToClipPoint = 0.0;
double measuredDepthAtFirstClipPoint = 0.0;
wellPathDisplayCoords = RigWellPath::clipPolylineStartAboveZ( wellPathDisplayCoords,
clipLocationDisplay.z(),
horizontalLengthAlongWellToClipPoint,
measuredDepthAtFirstClipPoint,
indexToFirstVisibleSegment );
}
// Create curve normal vectors using the unclipped well path points and normals.
createCurveNormalVectors( displayCoordTransform,
indexToFirstVisibleSegment,
planeOffsetFromWellPathCenter,
planeWidth,
samplingIntervalSize,
wellPathSegmentNormals );
// Note that normals are calculated on the full non-clipped well path. So we need to clip the start here.
wellPathSegmentNormals.erase( wellPathSegmentNormals.begin(), wellPathSegmentNormals.end() - wellPathDisplayCoords.size() );
if ( wellPathDisplayCoords.size() < (size_t)2 )
{
// Need at least two well path points to create a valid path.
return false;
}
m_vertices.reserve( wellPathDisplayCoords.size() * 2 );
for ( size_t i = 0; i < wellPathDisplayCoords.size(); i++ )
{
m_vertices.push_back( wellPathDisplayCoords[i] + wellPathSegmentNormals[i] * ( planeOffsetFromWellPathCenter - 0.025 * planeWidth ) );
m_vertices.push_back( wellPathDisplayCoords[i] + wellPathSegmentNormals[i] * ( planeOffsetFromWellPathCenter + 1.025 * planeWidth ) );
}
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( m_vertices.size() );
for ( size_t i = 0; i < m_vertices.size(); ++i )
{
( *vertexArray )[i] = cvf::Vec3f( m_vertices[i] );
}
createBackground( vertexArray.p() );
createBorder( vertexArray.p() );
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::clearGeometry()
{
m_background = nullptr;
m_border = nullptr;
m_curveNormalVectors = nullptr;
m_vertices.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogDrawSurfaceGenerator::background() const
{
return m_background;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogDrawSurfaceGenerator::border() const
{
return m_border;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableVectors> Riv3dWellLogDrawSurfaceGenerator::curveNormalVectors() const
{
return m_curveNormalVectors;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<cvf::Vec3d>& Riv3dWellLogDrawSurfaceGenerator::vertices() const
{
return m_vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createCurveNormalVectors( const caf::DisplayCoordTransform* displayCoordTransform,
size_t clipStartIndex,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize,
const std::vector<cvf::Vec3d>& segmentNormals )
{
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedWellPathNormals;
double firstMd = wellPathGeometry()->measuredDepths().at( clipStartIndex );
double lastMd = wellPathGeometry()->measuredDepths().back();
double md = lastMd;
while ( md >= firstMd )
{
cvf::Vec3d point = wellPathGeometry()->interpolatedPointAlongWellPath( md );
point = displayCoordTransform->transformToDisplayCoord( point );
cvf::Vec3d curveNormal = wellPathGeometry()->interpolatedVectorValuesAlongWellPath( segmentNormals, md );
interpolatedWellPathPoints.push_back( point );
interpolatedWellPathNormals.push_back( curveNormal.getNormalized() );
md -= samplingIntervalSize;
}
std::vector<cvf::Vec3f> arrowVertices;
std::vector<cvf::Vec3f> arrowVectors;
arrowVertices.reserve( interpolatedWellPathPoints.size() );
arrowVectors.reserve( interpolatedWellPathPoints.size() );
double shaftRelativeRadius = 0.0125f;
double arrowHeadRelativeRadius = shaftRelativeRadius * 3;
double arrowHeadRelativeLength = arrowHeadRelativeRadius * 3;
double totalArrowScaling = 1.0 / ( 1.0 - arrowHeadRelativeLength );
// Normal lines. Start from one to avoid drawing at surface edge.
for ( size_t i = 1; i < interpolatedWellPathNormals.size(); i++ )
{
arrowVertices.push_back( cvf::Vec3f( interpolatedWellPathPoints[i] + interpolatedWellPathNormals[i] * planeOffsetFromWellPathCenter ) );
arrowVectors.push_back( cvf::Vec3f( interpolatedWellPathNormals[i] * planeWidth * totalArrowScaling ) );
}
if ( arrowVertices.empty() || arrowVectors.empty() )
{
return;
}
m_curveNormalVectors = new cvf::DrawableVectors();
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( arrowVertices );
cvf::ref<cvf::Vec3fArray> vectorArray = new cvf::Vec3fArray( arrowVectors );
// Create the arrow glyph for the vector drawer
cvf::GeometryBuilderTriangles arrowBuilder;
cvf::ArrowGenerator gen;
gen.setShaftRelativeRadius( shaftRelativeRadius );
gen.setHeadRelativeRadius( arrowHeadRelativeRadius );
gen.setHeadRelativeLength( arrowHeadRelativeLength );
gen.setNumSlices( 4 );
gen.generate( &arrowBuilder );
m_curveNormalVectors->setGlyph( arrowBuilder.trianglesUShort().p(), arrowBuilder.vertices().p() );
m_curveNormalVectors->setVectors( vertexArray.p(), vectorArray.p() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createBackground( cvf::Vec3fArray* vertexArray )
{
std::vector<cvf::uint> backgroundIndices;
backgroundIndices.reserve( vertexArray->size() );
for ( size_t i = 0; i < vertexArray->size(); ++i )
{
backgroundIndices.push_back( ( cvf::uint )( i ) );
}
// Background specific
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_TRIANGLE_STRIP );
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray( backgroundIndices );
indexedUInt->setIndices( indexArray.p() );
m_background = new cvf::DrawableGeo();
m_background->addPrimitiveSet( indexedUInt.p() );
m_background->setVertexArray( vertexArray );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createBorder( cvf::Vec3fArray* vertexArray )
{
std::vector<cvf::uint> borderIndices;
borderIndices.reserve( m_vertices.size() );
int secondLastEvenVertex = (int)vertexArray->size() - 4;
// Border close to the well. All even indices.
for ( int i = 0; i <= secondLastEvenVertex; i += 2 )
{
borderIndices.push_back( (cvf::uint)i );
borderIndices.push_back( (cvf::uint)i + 2 );
}
// Connect to border away from well
borderIndices.push_back( ( cvf::uint )( vertexArray->size() - 2 ) );
borderIndices.push_back( ( cvf::uint )( vertexArray->size() - 1 ) );
int secondOddVertex = 3;
int lastOddVertex = (int)vertexArray->size() - 1;
// Border away from from well are odd indices in reverse order to create a closed surface.
for ( int i = lastOddVertex; i >= secondOddVertex; i -= 2 )
{
borderIndices.push_back( (cvf::uint)i );
borderIndices.push_back( (cvf::uint)i - 2 );
}
// Close border
borderIndices.push_back( 1u );
borderIndices.push_back( 0u );
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray( borderIndices );
indexedUInt->setIndices( indexArray.p() );
m_border = new cvf::DrawableGeo();
m_border->addPrimitiveSet( indexedUInt.p() );
m_border->setVertexArray( vertexArray );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellPath* Riv3dWellLogDrawSurfaceGenerator::wellPathGeometry() const
{
return m_wellPath->wellPathGeometry();
}