ResInsight/ApplicationCode/ResultStatisticsCache/RigStatisticsDataCache.cpp
2019-09-06 10:57:22 +02:00

406 lines
15 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigStatisticsDataCache.h"
#include "RigStatisticsCalculator.h"
#include "RigStatisticsMath.h"
#include <cmath> // Needed for HUGE_VAL on Linux
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStatisticsDataCache::RigStatisticsDataCache( RigStatisticsCalculator* statisticsCalculator )
: m_statisticsCalculator( statisticsCalculator )
{
CVF_ASSERT( m_statisticsCalculator.notNull() );
clearAllStatistics();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::clearAllStatistics()
{
m_statsAllTimesteps = StatisticsValues();
m_statsPrTs.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::minMaxCellScalarValues( double& min, double& max )
{
if ( !m_statsAllTimesteps.m_isMaxMinCalculated )
{
min = HUGE_VAL;
max = -HUGE_VAL;
size_t i;
for ( i = 0; i < m_statisticsCalculator->timeStepCount(); i++ )
{
double tsmin, tsmax;
this->minMaxCellScalarValues( i, tsmin, tsmax );
if ( tsmin < min ) min = tsmin;
if ( tsmax > max ) max = tsmax;
}
m_statsAllTimesteps.m_minValue = min;
m_statsAllTimesteps.m_maxValue = max;
m_statsAllTimesteps.m_isMaxMinCalculated = true;
}
min = m_statsAllTimesteps.m_minValue;
max = m_statsAllTimesteps.m_maxValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::minMaxCellScalarValues( size_t timeStepIndex, double& min, double& max )
{
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize( timeStepIndex + 1 );
}
if ( !m_statsPrTs[timeStepIndex].m_isMaxMinCalculated )
{
double tsMin = HUGE_VAL;
double tsMax = -HUGE_VAL;
m_statisticsCalculator->minMaxCellScalarValues( timeStepIndex, tsMin, tsMax );
m_statsPrTs[timeStepIndex].m_minValue = tsMin;
m_statsPrTs[timeStepIndex].m_maxValue = tsMax;
m_statsPrTs[timeStepIndex].m_isMaxMinCalculated = true;
}
min = m_statsPrTs[timeStepIndex].m_minValue;
max = m_statsPrTs[timeStepIndex].m_maxValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::posNegClosestToZero( double& pos, double& neg )
{
if ( !m_statsAllTimesteps.m_isClosestToZeroCalculated )
{
pos = HUGE_VAL;
neg = -HUGE_VAL;
size_t i;
for ( i = 0; i < m_statisticsCalculator->timeStepCount(); i++ )
{
double tsNeg, tsPos;
this->posNegClosestToZero( i, tsPos, tsNeg );
if ( tsNeg > neg && tsNeg < 0 ) neg = tsNeg;
if ( tsPos < pos && tsPos > 0 ) pos = tsPos;
}
m_statsAllTimesteps.m_posClosestToZero = pos;
m_statsAllTimesteps.m_negClosestToZero = neg;
m_statsAllTimesteps.m_isClosestToZeroCalculated = true;
}
pos = m_statsAllTimesteps.m_posClosestToZero;
neg = m_statsAllTimesteps.m_negClosestToZero;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::posNegClosestToZero( size_t timeStepIndex, double& posNearZero, double& negNearZero )
{
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize( timeStepIndex + 1 );
}
if ( !m_statsPrTs[timeStepIndex].m_isClosestToZeroCalculated )
{
double pos = HUGE_VAL;
double neg = -HUGE_VAL;
m_statisticsCalculator->posNegClosestToZero( timeStepIndex, pos, neg );
m_statsPrTs[timeStepIndex].m_posClosestToZero = pos;
m_statsPrTs[timeStepIndex].m_negClosestToZero = neg;
m_statsPrTs[timeStepIndex].m_isClosestToZeroCalculated = true;
}
posNearZero = m_statsPrTs[timeStepIndex].m_posClosestToZero;
negNearZero = m_statsPrTs[timeStepIndex].m_negClosestToZero;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::meanCellScalarValues( double& meanValue )
{
if ( !m_statsAllTimesteps.m_isMeanCalculated )
{
m_statisticsCalculator->meanCellScalarValue( m_statsAllTimesteps.m_meanValue );
m_statsAllTimesteps.m_isMeanCalculated = true;
}
meanValue = m_statsAllTimesteps.m_meanValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::meanCellScalarValues( size_t timeStepIndex, double& meanValue )
{
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize( timeStepIndex + 1 );
}
if ( !m_statsPrTs[timeStepIndex].m_isMeanCalculated )
{
m_statisticsCalculator->meanCellScalarValue( timeStepIndex, m_statsPrTs[timeStepIndex].m_meanValue );
m_statsPrTs[timeStepIndex].m_isMeanCalculated = true;
}
meanValue = m_statsPrTs[timeStepIndex].m_meanValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::sumCellScalarValues( double& sumValue )
{
if ( !m_statsAllTimesteps.m_isValueSumCalculated )
{
double aggregatedSum = 0.0;
for ( size_t i = 0; i < m_statisticsCalculator->timeStepCount(); i++ )
{
double valueSum = 0.0;
this->sumCellScalarValues( i, valueSum );
aggregatedSum += valueSum;
}
m_statsAllTimesteps.m_valueSum = aggregatedSum;
m_statsAllTimesteps.m_isValueSumCalculated = true;
}
sumValue = m_statsAllTimesteps.m_valueSum;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::sumCellScalarValues( size_t timeStepIndex, double& sumValue )
{
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize( timeStepIndex + 1 );
}
if ( !m_statsPrTs[timeStepIndex].m_isValueSumCalculated )
{
double valueSum = 0.0;
size_t sampleCount = 0;
m_statisticsCalculator->valueSumAndSampleCount( timeStepIndex, valueSum, sampleCount );
m_statsPrTs[timeStepIndex].m_valueSum = valueSum;
m_statsPrTs[timeStepIndex].m_isValueSumCalculated = true;
}
sumValue = m_statsPrTs[timeStepIndex].m_valueSum;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram()
{
computeHistogramStatisticsIfNeeded();
return m_statsAllTimesteps.m_histogram;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigStatisticsDataCache::cellScalarValuesHistogram( size_t timeStepIndex )
{
computeHistogramStatisticsIfNeeded( timeStepIndex );
return m_statsPrTs[timeStepIndex].m_histogram;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<int>& RigStatisticsDataCache::uniqueCellScalarValues()
{
computeUniqueValuesIfNeeded();
return m_statsAllTimesteps.m_uniqueValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<int>& RigStatisticsDataCache::uniqueCellScalarValues( size_t timeStepIndex )
{
computeUniqueValuesIfNeeded( timeStepIndex );
return m_statsPrTs[timeStepIndex].m_uniqueValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::mobileVolumeWeightedMean( size_t timeStepIndex, double& mean )
{
if ( timeStepIndex >= m_statsPrTs.size() )
{
m_statsPrTs.resize( timeStepIndex + 1 );
}
if ( !m_statsPrTs[timeStepIndex].m_isVolumeWeightedMeanCalculated )
{
m_statisticsCalculator->mobileVolumeWeightedMean( timeStepIndex, m_statsPrTs[timeStepIndex].m_volumeWeightedMean );
}
mean = m_statsPrTs[timeStepIndex].m_volumeWeightedMean;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::mobileVolumeWeightedMean( double& mean )
{
if ( !m_statsAllTimesteps.m_isVolumeWeightedMeanCalculated )
{
m_statisticsCalculator->mobileVolumeWeightedMean( m_statsAllTimesteps.m_volumeWeightedMean );
m_statsAllTimesteps.m_isVolumeWeightedMeanCalculated = true;
}
mean = m_statsAllTimesteps.m_volumeWeightedMean;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::p10p90CellScalarValues( double& p10, double& p90 )
{
computeHistogramStatisticsIfNeeded();
p10 = m_statsAllTimesteps.m_p10;
p90 = m_statsAllTimesteps.m_p90;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::p10p90CellScalarValues( size_t timeStepIndex, double& p10, double& p90 )
{
computeHistogramStatisticsIfNeeded( timeStepIndex );
p10 = m_statsPrTs[timeStepIndex].m_p10;
p90 = m_statsPrTs[timeStepIndex].m_p90;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeHistogramStatisticsIfNeeded()
{
if ( m_statsAllTimesteps.m_histogram.size() == 0 )
{
double min;
double max;
size_t nBins = 100;
this->minMaxCellScalarValues( min, max );
RigHistogramCalculator histCalc( min, max, nBins, &m_statsAllTimesteps.m_histogram );
m_statisticsCalculator->addDataToHistogramCalculator( histCalc );
m_statsAllTimesteps.m_p10 = histCalc.calculatePercentil( 0.1 );
m_statsAllTimesteps.m_p90 = histCalc.calculatePercentil( 0.9 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeHistogramStatisticsIfNeeded( size_t timeStepIndex )
{
if ( m_statsPrTs[timeStepIndex].m_histogram.size() == 0 )
{
double min;
double max;
size_t nBins = 100;
this->minMaxCellScalarValues( timeStepIndex, min, max );
RigHistogramCalculator histCalc( min, max, nBins, &m_statsPrTs[timeStepIndex].m_histogram );
m_statisticsCalculator->addDataToHistogramCalculator( timeStepIndex, histCalc );
m_statsPrTs[timeStepIndex].m_p10 = histCalc.calculatePercentil( 0.1 );
m_statsPrTs[timeStepIndex].m_p90 = histCalc.calculatePercentil( 0.9 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeUniqueValuesIfNeeded()
{
if ( m_statsAllTimesteps.m_uniqueValues.size() == 0 )
{
std::set<int> setValues;
m_statisticsCalculator->uniqueValues( 0, setValues ); // This is a Hack ! Only using first timestep. Ok for
// Static eclipse results but beware !
for ( auto val : setValues )
{
m_statsAllTimesteps.m_uniqueValues.push_back( val );
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigStatisticsDataCache::computeUniqueValuesIfNeeded( size_t timeStepIndex )
{
if ( m_statsPrTs[timeStepIndex].m_uniqueValues.size() == 0 )
{
std::set<int> setValues;
m_statisticsCalculator->uniqueValues( timeStepIndex, setValues );
for ( auto val : setValues )
{
m_statsPrTs[timeStepIndex].m_uniqueValues.push_back( val );
}
}
}