mirror of
https://github.com/OPM/ResInsight.git
synced 2025-02-20 11:48:35 -06:00
* First wbs parameter shading * Fix wrong Grid->grid rename in GRPC CMakeLists.cmake * Support color shading of Well Log Tracks based on WBS parameters * Further improvements to shading for WBS * #4696 Set RIG_NODEL Por-Bar as default Well log extraction curve parameter for GeoMech * Fix canvas alignment issue for new WBS plots
1139 lines
52 KiB
C++
1139 lines
52 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) Statoil ASA
|
|
// Copyright (C) Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//==================================================================================================
|
|
///
|
|
//==================================================================================================
|
|
#include "RigGeoMechWellLogExtractor.h"
|
|
|
|
#include "RiaDefines.h"
|
|
#include "RiaWeightedMeanCalculator.h"
|
|
#include "RigFemPart.h"
|
|
#include "RigFemPartCollection.h"
|
|
#include "RigFemPartResultsCollection.h"
|
|
#include "RigFemTypes.h"
|
|
#include "RigGeoMechBoreHoleStressCalculator.h"
|
|
#include "RigGeoMechCaseData.h"
|
|
|
|
#include "RigWellLogExtractionTools.h"
|
|
#include "RigWellPath.h"
|
|
#include "RigWellPathIntersectionTools.h"
|
|
|
|
#include "cafTensor3.h"
|
|
#include "cvfGeometryTools.h"
|
|
#include "cvfMath.h"
|
|
|
|
#include <type_traits>
|
|
|
|
const double RigGeoMechWellLogExtractor::UNIT_WEIGHT_OF_WATER = 9.81 * 1000.0; // N / m^3
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigGeoMechWellLogExtractor::RigGeoMechWellLogExtractor( RigGeoMechCaseData* aCase,
|
|
const RigWellPath* wellpath,
|
|
const std::string& wellCaseErrorMsgName )
|
|
: RigWellLogExtractor( wellpath, wellCaseErrorMsgName )
|
|
, m_caseData( aCase )
|
|
{
|
|
calculateIntersection();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::curveData( const RigFemResultAddress& resAddr, int frameIndex, std::vector<double>* values )
|
|
{
|
|
CVF_TIGHT_ASSERT( values );
|
|
|
|
if ( resAddr.resultPosType == RIG_WELLPATH_DERIVED )
|
|
{
|
|
if ( resAddr.fieldName == RiaDefines::wellPathFGResultName().toStdString() ||
|
|
resAddr.fieldName == RiaDefines::wellPathSFGResultName().toStdString() )
|
|
{
|
|
wellBoreWallCurveData( resAddr, frameIndex, values );
|
|
return;
|
|
}
|
|
else if ( resAddr.fieldName == "PP" || resAddr.fieldName == "OBG" || resAddr.fieldName == "SH" )
|
|
{
|
|
wellPathScaledCurveData( resAddr, frameIndex, values );
|
|
return;
|
|
}
|
|
else if ( resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination" )
|
|
{
|
|
wellPathAngles( resAddr, values );
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ( !resAddr.isValid() ) return;
|
|
|
|
RigFemResultAddress convResAddr = resAddr;
|
|
|
|
// When showing POR results, always use the element nodal result,
|
|
// to get correct handling of elements without POR results
|
|
|
|
if ( convResAddr.fieldName == "POR-Bar" ) convResAddr.resultPosType = RIG_ELEMENT_NODAL;
|
|
|
|
CVF_ASSERT( resAddr.resultPosType != RIG_WELLPATH_DERIVED );
|
|
|
|
const std::vector<float>& resultValues = m_caseData->femPartResults()->resultValues( convResAddr, 0, frameIndex );
|
|
|
|
if ( !resultValues.size() ) return;
|
|
|
|
values->resize( m_intersections.size() );
|
|
|
|
for ( size_t intersectionIdx = 0; intersectionIdx < m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
( *values )[intersectionIdx] = static_cast<double>(
|
|
interpolateGridResultValue<float>( convResAddr.resultPosType, resultValues, intersectionIdx, false ) );
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
float RigGeoMechWellLogExtractor::calculatePorePressureInSegment( int64_t intersectionIdx,
|
|
float averageSegmentPorePressureBar,
|
|
double hydroStaticPorePressureBar,
|
|
double effectiveDepthMeters,
|
|
const std::vector<float>& poreElementPressuresPascal ) const
|
|
{
|
|
// Priority 4: Assign a default of hydrostatic pore pressure
|
|
double porePressure = hydroStaticPorePressureBar;
|
|
|
|
// Priority 3: Try element property tables
|
|
if ( m_porePressureSource == AUTO || m_porePressureSource == ELEMENT_PROPERTY_TABLE )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
if ( elmIdx < poreElementPressuresPascal.size() )
|
|
{
|
|
// Pore pressure from element property tables are in pascal.
|
|
porePressure = pascalToBar( poreElementPressuresPascal[elmIdx] );
|
|
}
|
|
}
|
|
|
|
// Priority 2: Try LAS-file
|
|
if ( m_porePressureSource == AUTO || m_porePressureSource == LAS_FILE )
|
|
{
|
|
double lasMudWeightKgPerM3 = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndMudWeightKgPerM3 );
|
|
if ( lasMudWeightKgPerM3 != std::numeric_limits<double>::infinity() )
|
|
{
|
|
double specificMudWeightNPerM3 = lasMudWeightKgPerM3 * 9.81;
|
|
double porePressurePascal = specificMudWeightNPerM3 * effectiveDepthMeters;
|
|
porePressure = pascalToBar( porePressurePascal );
|
|
}
|
|
}
|
|
|
|
// Priority 1: Try pore pressure from the grid
|
|
if ( m_porePressureSource == AUTO || m_porePressureSource == GRID )
|
|
{
|
|
if ( averageSegmentPorePressureBar != std::numeric_limits<double>::infinity() &&
|
|
averageSegmentPorePressureBar > 0.0 )
|
|
{
|
|
porePressure = averageSegmentPorePressureBar;
|
|
}
|
|
}
|
|
|
|
CVF_ASSERT( porePressure >= 0.0 );
|
|
return porePressure;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
float RigGeoMechWellLogExtractor::calculatePoissonRatio( int64_t intersectionIdx,
|
|
const std::vector<float>& poissonRatios ) const
|
|
{
|
|
// Priority 3: User defined poisson ratio
|
|
double poissonRatio = m_userDefinedPoissonRatio;
|
|
|
|
// Priority 2: Element property table ratio
|
|
if ( m_poissonRatioSource == AUTO || m_poissonRatioSource == ELEMENT_PROPERTY_TABLE )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
if ( elmIdx < poissonRatios.size() )
|
|
{
|
|
poissonRatio = poissonRatios[elmIdx];
|
|
}
|
|
}
|
|
|
|
// Priority 1: Las-file poisson ratio
|
|
if ( m_poissonRatioSource == AUTO || m_poissonRatioSource == LAS_FILE )
|
|
{
|
|
if ( !m_wellLogMdAndPoissonRatios.empty() )
|
|
{
|
|
double lasPoissionRatio = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndPoissonRatios );
|
|
if ( lasPoissionRatio != std::numeric_limits<double>::infinity() )
|
|
{
|
|
poissonRatio = lasPoissionRatio;
|
|
}
|
|
}
|
|
}
|
|
|
|
return poissonRatio;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
float RigGeoMechWellLogExtractor::calculateUcs( int64_t intersectionIdx, const std::vector<float>& ucsValuesPascal ) const
|
|
{
|
|
// Priority 3: User defined UCS
|
|
double uniaxialStrengthInBar = m_userDefinedUcs;
|
|
|
|
// Priority 2: From element property table
|
|
if ( m_ucsSource == AUTO || m_ucsSource == ELEMENT_PROPERTY_TABLE )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
if ( elmIdx < ucsValuesPascal.size() )
|
|
{
|
|
// Read UCS from element table in Pascal
|
|
uniaxialStrengthInBar = pascalToBar( ucsValuesPascal[elmIdx] );
|
|
}
|
|
}
|
|
|
|
if ( m_ucsSource == AUTO || m_ucsSource == LAS_FILE )
|
|
{
|
|
if ( !m_wellLogMdAndUcsBar.empty() )
|
|
{
|
|
double lasUniaxialStrengthInBar = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndUcsBar );
|
|
if ( lasUniaxialStrengthInBar != std::numeric_limits<double>::infinity() )
|
|
{
|
|
uniaxialStrengthInBar = lasUniaxialStrengthInBar;
|
|
}
|
|
}
|
|
}
|
|
|
|
return uniaxialStrengthInBar;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellPathAngles( const RigFemResultAddress& resAddr, std::vector<double>* values )
|
|
{
|
|
CVF_ASSERT( values );
|
|
CVF_ASSERT( resAddr.fieldName == "Azimuth" || resAddr.fieldName == "Inclination" );
|
|
values->resize( m_intersections.size(), 0.0f );
|
|
const double epsilon = 1.0e-6 * 360;
|
|
const cvf::Vec3d trueNorth( 0.0, 1.0, 0.0 );
|
|
const cvf::Vec3d up( 0.0, 0.0, 1.0 );
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentFollowWellPathSegments );
|
|
|
|
// Deviation from vertical. Since well path is tending downwards we compare with negative z.
|
|
double inclination = cvf::Math::toDegrees(
|
|
std::acos( cvf::Vec3d( 0.0, 0.0, -1.0 ) * wellPathTangent.getNormalized() ) );
|
|
|
|
if ( resAddr.fieldName == "Azimuth" )
|
|
{
|
|
double azimuth = HUGE_VAL;
|
|
|
|
// Azimuth is not defined when well path is vertical. We define it as infinite to avoid it showing up in the plot.
|
|
if ( cvf::Math::valueInRange( inclination, epsilon, 180.0 - epsilon ) )
|
|
{
|
|
cvf::Vec3d projectedTangentXY = wellPathTangent;
|
|
projectedTangentXY.z() = 0.0;
|
|
|
|
// Do tangentXY to true north for clockwise angles.
|
|
double dotProduct = projectedTangentXY * trueNorth;
|
|
double crossProduct = ( projectedTangentXY ^ trueNorth ) * up;
|
|
// http://www.glossary.oilfield.slb.com/Terms/a/azimuth.aspx
|
|
azimuth = cvf::Math::toDegrees( std::atan2( crossProduct, dotProduct ) );
|
|
if ( azimuth < 0.0 )
|
|
{
|
|
// Straight atan2 gives angle from -PI to PI yielding angles from -180 to 180
|
|
// where the negative angles are counter clockwise.
|
|
// To get all positive clockwise angles, we add 360 degrees to negative angles.
|
|
azimuth = azimuth + 360.0;
|
|
}
|
|
}
|
|
|
|
( *values )[intersectionIdx] = azimuth;
|
|
}
|
|
else
|
|
{
|
|
( *values )[intersectionIdx] = inclination;
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellPathScaledCurveData( const RigFemResultAddress& resAddr,
|
|
int frameIndex,
|
|
std::vector<double>* values )
|
|
{
|
|
CVF_ASSERT( values );
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
std::string nativeFieldName;
|
|
std::string nativeCompName;
|
|
if ( resAddr.fieldName == "PP" )
|
|
{
|
|
nativeFieldName = "POR-Bar"; // More likely to be in memory than POR
|
|
}
|
|
else if ( resAddr.fieldName == "OBG" )
|
|
{
|
|
nativeFieldName = "ST";
|
|
nativeCompName = "S33";
|
|
}
|
|
else if ( resAddr.fieldName == "SH" )
|
|
{
|
|
nativeFieldName = "ST";
|
|
nativeCompName = "S3";
|
|
}
|
|
|
|
RigFemResultAddress nativeAddr( RIG_ELEMENT_NODAL, nativeFieldName, nativeCompName );
|
|
RigFemResultAddress porElementResAddr( RIG_ELEMENT, "POR", "" );
|
|
|
|
std::vector<float> unscaledResultValues = resultCollection->resultValues( nativeAddr, 0, frameIndex );
|
|
std::vector<float> poreElementPressuresPascal = resultCollection->resultValues( porElementResAddr, 0, frameIndex );
|
|
|
|
std::vector<float> interpolatedInterfaceValues;
|
|
interpolatedInterfaceValues.resize( m_intersections.size(), std::numeric_limits<double>::infinity() );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
interpolatedInterfaceValues[intersectionIdx] = interpolateGridResultValue<float>( nativeAddr.resultPosType,
|
|
unscaledResultValues,
|
|
intersectionIdx,
|
|
false );
|
|
}
|
|
|
|
values->resize( m_intersections.size(), 0.0f );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
// Set the value to invalid by default
|
|
( *values )[intersectionIdx] = std::numeric_limits<double>::infinity();
|
|
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
cvf::Vec3f centroid = cellCentroid( intersectionIdx );
|
|
|
|
double trueVerticalDepth = -centroid.z();
|
|
|
|
double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
|
|
double hydroStaticPorePressureBar = pascalToBar( effectiveDepthMeters * UNIT_WEIGHT_OF_WATER );
|
|
|
|
float averageUnscaledValue = std::numeric_limits<float>::infinity();
|
|
bool validAverage = averageIntersectionValuesToSegmentValue( intersectionIdx,
|
|
interpolatedInterfaceValues,
|
|
std::numeric_limits<float>::infinity(),
|
|
&averageUnscaledValue );
|
|
|
|
if ( resAddr.fieldName == "PP" && validAverage )
|
|
{
|
|
double segmentPorePressureFromGrid = averageUnscaledValue;
|
|
averageUnscaledValue = calculatePorePressureInSegment( intersectionIdx,
|
|
segmentPorePressureFromGrid,
|
|
hydroStaticPorePressureBar,
|
|
effectiveDepthMeters,
|
|
poreElementPressuresPascal );
|
|
}
|
|
|
|
( *values )[intersectionIdx] = static_cast<double>( averageUnscaledValue ) / hydroStaticPorePressureBar;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::wellBoreWallCurveData( const RigFemResultAddress& resAddr,
|
|
int frameIndex,
|
|
std::vector<double>* values )
|
|
{
|
|
CVF_ASSERT( values );
|
|
CVF_ASSERT( resAddr.fieldName == RiaDefines::wellPathFGResultName().toStdString() ||
|
|
resAddr.fieldName == RiaDefines::wellPathSFGResultName().toStdString() );
|
|
|
|
// The result addresses needed
|
|
RigFemResultAddress stressResAddr( RIG_ELEMENT_NODAL, "ST", "" );
|
|
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
|
|
// Allow POR as an element property value
|
|
RigFemResultAddress porElementResAddr( RIG_ELEMENT, "POR", "" );
|
|
RigFemResultAddress poissonResAddr( RIG_ELEMENT, "RATIO", "" );
|
|
RigFemResultAddress ucsResAddr( RIG_ELEMENT, "UCS", "" );
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
// Load results
|
|
std::vector<caf::Ten3f> vertexStressesFloat = resultCollection->tensors( stressResAddr, 0, frameIndex );
|
|
if ( !vertexStressesFloat.size() ) return;
|
|
|
|
std::vector<caf::Ten3d> vertexStresses;
|
|
vertexStresses.reserve( vertexStressesFloat.size() );
|
|
for ( const caf::Ten3f& floatTensor : vertexStressesFloat )
|
|
{
|
|
vertexStresses.push_back( caf::Ten3d( floatTensor ) );
|
|
}
|
|
std::vector<float> porePressures = resultCollection->resultValues( porBarResAddr, 0, frameIndex );
|
|
std::vector<float> poreElementPressuresPascal = resultCollection->resultValues( porElementResAddr, 0, frameIndex );
|
|
std::vector<float> poissonRatios = resultCollection->resultValues( poissonResAddr, 0, frameIndex );
|
|
std::vector<float> ucsValuesPascal = resultCollection->resultValues( ucsResAddr, 0, frameIndex );
|
|
|
|
std::vector<float> interpolatedInterfacePorePressureBar;
|
|
interpolatedInterfacePorePressureBar.resize( m_intersections.size(), std::numeric_limits<double>::infinity() );
|
|
|
|
std::vector<caf::Ten3d> interpolatedInterfaceStressBar;
|
|
interpolatedInterfaceStressBar.resize( m_intersections.size() );
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
interpolatedInterfacePorePressureBar[intersectionIdx] = interpolateGridResultValue( porBarResAddr.resultPosType,
|
|
porePressures,
|
|
intersectionIdx,
|
|
false );
|
|
interpolatedInterfaceStressBar[intersectionIdx] = interpolateGridResultValue( stressResAddr.resultPosType,
|
|
vertexStresses,
|
|
intersectionIdx,
|
|
false );
|
|
}
|
|
|
|
values->resize( m_intersections.size(), 0.0f );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
cvf::Vec3f centroid = cellCentroid( intersectionIdx );
|
|
|
|
double trueVerticalDepth = -centroid.z();
|
|
double effectiveDepthMeters = trueVerticalDepth + m_rkbDiff;
|
|
double hydroStaticPorePressureBar = pascalToBar( effectiveDepthMeters * UNIT_WEIGHT_OF_WATER );
|
|
|
|
float averagePorePressureBar = std::numeric_limits<float>::infinity();
|
|
bool validGridPorePressure = averageIntersectionValuesToSegmentValue( intersectionIdx,
|
|
interpolatedInterfacePorePressureBar,
|
|
std::numeric_limits<float>::infinity(),
|
|
&averagePorePressureBar );
|
|
bool isFGregion = validGridPorePressure; // FG is for sands, SFG for shale. Sands has PP, shale does not.
|
|
|
|
double porePressureBar = calculatePorePressureInSegment( intersectionIdx,
|
|
averagePorePressureBar,
|
|
hydroStaticPorePressureBar,
|
|
effectiveDepthMeters,
|
|
poreElementPressuresPascal );
|
|
double poissonRatio = calculatePoissonRatio( intersectionIdx, poissonRatios );
|
|
double ucsBar = calculateUcs( intersectionIdx, ucsValuesPascal );
|
|
|
|
caf::Ten3d segmentStress;
|
|
bool validSegmentStress = averageIntersectionValuesToSegmentValue( intersectionIdx,
|
|
interpolatedInterfaceStressBar,
|
|
caf::Ten3d::invalid(),
|
|
&segmentStress );
|
|
|
|
cvf::Vec3d wellPathTangent = calculateWellPathTangent( intersectionIdx, TangentConstantWithinCell );
|
|
caf::Ten3d wellPathStressFloat = transformTensorToWellPathOrientation( wellPathTangent, segmentStress );
|
|
caf::Ten3d wellPathStressDouble( wellPathStressFloat );
|
|
|
|
RigGeoMechBoreHoleStressCalculator sigmaCalculator( wellPathStressDouble, porePressureBar, poissonRatio, ucsBar, 32 );
|
|
double resultValue = std::numeric_limits<double>::infinity();
|
|
if ( resAddr.fieldName == RiaDefines::wellPathFGResultName().toStdString() )
|
|
{
|
|
if ( isFGregion && validSegmentStress )
|
|
{
|
|
resultValue = sigmaCalculator.solveFractureGradient();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CVF_ASSERT( resAddr.fieldName == RiaDefines::wellPathSFGResultName().toStdString() );
|
|
if ( !isFGregion && validSegmentStress )
|
|
{
|
|
resultValue = sigmaCalculator.solveStassiDalia();
|
|
}
|
|
}
|
|
if ( resultValue != std::numeric_limits<double>::infinity() )
|
|
{
|
|
if ( hydroStaticPorePressureBar > 1.0e-8 )
|
|
{
|
|
resultValue /= hydroStaticPorePressureBar;
|
|
}
|
|
}
|
|
( *values )[intersectionIdx] = resultValue;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const RigGeoMechCaseData* RigGeoMechWellLogExtractor::caseData()
|
|
{
|
|
return m_caseData.p();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setRkbDiff( double rkbDiff )
|
|
{
|
|
m_rkbDiff = rkbDiff;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWellLogMdAndMudWeightKgPerM3( const std::vector<std::pair<double, double>>& porePressures )
|
|
{
|
|
m_wellLogMdAndMudWeightKgPerM3 = porePressures;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWellLogMdAndUcsBar( const std::vector<std::pair<double, double>>& ucsValues )
|
|
{
|
|
m_wellLogMdAndUcsBar = ucsValues;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWellLogMdAndPoissonRatio( const std::vector<std::pair<double, double>>& poissonRatios )
|
|
{
|
|
m_wellLogMdAndPoissonRatios = poissonRatios;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::set<RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::supportedSourcesForPorePressure()
|
|
{
|
|
return {AUTO, GRID, LAS_FILE, ELEMENT_PROPERTY_TABLE, HYDROSTATIC_PP};
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::set<RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::supportedSourcesForPoissonRatio()
|
|
{
|
|
return {AUTO, LAS_FILE, ELEMENT_PROPERTY_TABLE, USER_DEFINED};
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::set<RigGeoMechWellLogExtractor::WbsParameterSource> RigGeoMechWellLogExtractor::supportedSourcesForUcs()
|
|
{
|
|
return {AUTO, LAS_FILE, ELEMENT_PROPERTY_TABLE, USER_DEFINED};
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::setWbsParameters( WbsParameterSource porePressureSource,
|
|
WbsParameterSource poissonRatioSource,
|
|
WbsParameterSource ucsSource,
|
|
double userDefinedPoissonRatio,
|
|
double userDefinedUcs )
|
|
{
|
|
m_porePressureSource = porePressureSource;
|
|
m_poissonRatioSource = poissonRatioSource;
|
|
m_ucsSource = ucsSource;
|
|
m_userDefinedPoissonRatio = userDefinedPoissonRatio;
|
|
m_userDefinedUcs = userDefinedUcs;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<double> RigGeoMechWellLogExtractor::porePressureIntervals( int frameIndex )
|
|
{
|
|
std::vector<double> ppValues( m_intersections.size(), 0.0 );
|
|
|
|
RigFemResultAddress porBarResAddr( RIG_ELEMENT_NODAL, "POR-Bar", "" );
|
|
RigFemResultAddress porElementResAddr( RIG_ELEMENT, "POR", "" );
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
std::vector<float> porePressures = resultCollection->resultValues( porBarResAddr, 0, frameIndex );
|
|
std::vector<float> poreElementPressuresPascal = resultCollection->resultValues( porElementResAddr, 0, frameIndex );
|
|
|
|
std::vector<float> interpolatedInterfacePorePressureBar;
|
|
interpolatedInterfacePorePressureBar.resize( m_intersections.size(), std::numeric_limits<double>::infinity() );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
interpolatedInterfacePorePressureBar[intersectionIdx] = interpolateGridResultValue( porBarResAddr.resultPosType,
|
|
porePressures,
|
|
intersectionIdx,
|
|
false );
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
// Priority 4: Hydrostatic pore pressure
|
|
ppValues[intersectionIdx] = static_cast<double>( HYDROSTATIC_PP );
|
|
|
|
// Priority 3: Try element property tables
|
|
if ( m_porePressureSource == AUTO || m_porePressureSource == ELEMENT_PROPERTY_TABLE )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
if ( elmIdx < poreElementPressuresPascal.size() )
|
|
{
|
|
ppValues[intersectionIdx] = static_cast<double>( ELEMENT_PROPERTY_TABLE );
|
|
}
|
|
}
|
|
|
|
// Priority 2: Try LAS-file
|
|
if ( m_porePressureSource == AUTO || m_porePressureSource == LAS_FILE )
|
|
{
|
|
double lasMudWeightKgPerM3 = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndMudWeightKgPerM3 );
|
|
if ( lasMudWeightKgPerM3 != std::numeric_limits<double>::infinity() )
|
|
{
|
|
ppValues[intersectionIdx] = static_cast<double>( LAS_FILE );
|
|
}
|
|
}
|
|
|
|
// Priority 1: Try pore pressure from the grid
|
|
if ( m_porePressureSource == AUTO || m_porePressureSource == GRID )
|
|
{
|
|
float averagePorePressureBar = std::numeric_limits<float>::infinity();
|
|
bool validGridPorePressure = averageIntersectionValuesToSegmentValue( intersectionIdx,
|
|
interpolatedInterfacePorePressureBar,
|
|
std::numeric_limits<float>::infinity(),
|
|
&averagePorePressureBar );
|
|
if ( validGridPorePressure )
|
|
{
|
|
ppValues[intersectionIdx] = static_cast<double>( GRID );
|
|
}
|
|
}
|
|
}
|
|
return ppValues;
|
|
}
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<double> RigGeoMechWellLogExtractor::poissonIntervals( int frameIndex )
|
|
{
|
|
std::vector<double> poissonValues( m_intersections.size(), 0.0 );
|
|
|
|
RigFemResultAddress poissonResAddr( RIG_ELEMENT, "RATIO", "" );
|
|
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
std::vector<float> poissonRatios = resultCollection->resultValues( poissonResAddr, 0, frameIndex );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
// Priority 3: User defined Poisson ratio
|
|
poissonValues[intersectionIdx] = static_cast<double>( USER_DEFINED );
|
|
|
|
// Priority 2: Element property table ratio
|
|
if ( m_poissonRatioSource == AUTO || m_poissonRatioSource == ELEMENT_PROPERTY_TABLE )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
if ( elmIdx < poissonRatios.size() )
|
|
{
|
|
poissonValues[intersectionIdx] = static_cast<double>( ELEMENT_PROPERTY_TABLE );
|
|
}
|
|
}
|
|
|
|
// Priority 1: Las-file poisson ratio
|
|
if ( m_poissonRatioSource == AUTO || m_poissonRatioSource == LAS_FILE )
|
|
{
|
|
if ( !m_wellLogMdAndPoissonRatios.empty() )
|
|
{
|
|
double lasPoissionRatio = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndPoissonRatios );
|
|
if ( lasPoissionRatio != std::numeric_limits<double>::infinity() )
|
|
{
|
|
poissonValues[intersectionIdx] = static_cast<double>( LAS_FILE );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return poissonValues;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<double> RigGeoMechWellLogExtractor::ucsIntervals( int frameIndex )
|
|
{
|
|
std::vector<double> ucsValues( m_intersections.size(), 0.0 );
|
|
|
|
RigFemResultAddress ucsResAddr( RIG_ELEMENT, "UCS", "" );
|
|
|
|
RigFemPartResultsCollection* resultCollection = m_caseData->femPartResults();
|
|
|
|
std::vector<float> ucsValuesPascal = resultCollection->resultValues( ucsResAddr, 0, frameIndex );
|
|
|
|
#pragma omp parallel for
|
|
for ( int64_t intersectionIdx = 0; intersectionIdx < (int64_t)m_intersections.size(); ++intersectionIdx )
|
|
{
|
|
// Priority 3: User defined Poisson ratio
|
|
ucsValues[intersectionIdx] = static_cast<double>( USER_DEFINED );
|
|
|
|
// Priority 2: From element property table
|
|
if ( m_ucsSource == AUTO || m_ucsSource == ELEMENT_PROPERTY_TABLE )
|
|
{
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
if ( elmIdx < ucsValuesPascal.size() )
|
|
{
|
|
ucsValues[intersectionIdx] = static_cast<double>( ELEMENT_PROPERTY_TABLE );
|
|
}
|
|
}
|
|
// Priority 1: Las-file
|
|
if ( m_ucsSource == AUTO || m_ucsSource == LAS_FILE )
|
|
{
|
|
if ( !m_wellLogMdAndUcsBar.empty() )
|
|
{
|
|
double lasUniaxialStrengthInBar = getWellLogSegmentValue( intersectionIdx, m_wellLogMdAndUcsBar );
|
|
if ( lasUniaxialStrengthInBar != std::numeric_limits<double>::infinity() )
|
|
{
|
|
ucsValues[intersectionIdx] = static_cast<double>( LAS_FILE );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ucsValues;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename T>
|
|
T RigGeoMechWellLogExtractor::interpolateGridResultValue( RigFemResultPosEnum resultPosType,
|
|
const std::vector<T>& gridResultValues,
|
|
int64_t intersectionIdx,
|
|
bool averageNodeElementResults ) const
|
|
{
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) return T();
|
|
|
|
if ( resultPosType == RIG_FORMATION_NAMES )
|
|
{
|
|
resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
|
|
}
|
|
|
|
if ( resultPosType == RIG_ELEMENT )
|
|
{
|
|
return gridResultValues[elmIdx];
|
|
}
|
|
|
|
cvf::StructGridInterface::FaceType cellFace = m_intersectedCellFaces[intersectionIdx];
|
|
|
|
if ( cellFace == cvf::StructGridInterface::NO_FACE )
|
|
{
|
|
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
|
|
{
|
|
return std::numeric_limits<T>::infinity(); // undefined value. ELEMENT_NODAL_FACE values are only defined on a face.
|
|
}
|
|
// TODO: Should interpolate within the whole hexahedron. This requires converting to locals coordinates.
|
|
// For now just pick the average value for the cell.
|
|
size_t gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType,
|
|
static_cast<int>( elmIdx ),
|
|
0 );
|
|
T sumOfVertexValues = gridResultValues[gridResultValueIdx];
|
|
for ( int i = 1; i < 8; ++i )
|
|
{
|
|
gridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType, static_cast<int>( elmIdx ), i );
|
|
sumOfVertexValues = sumOfVertexValues + gridResultValues[gridResultValueIdx];
|
|
}
|
|
return sumOfVertexValues * ( 1.0 / 8.0 );
|
|
}
|
|
|
|
int faceNodeCount = 0;
|
|
const int* elementLocalIndicesForFace = RigFemTypes::localElmNodeIndicesForFace( elmType, cellFace, &faceNodeCount );
|
|
const int* elmNodeIndices = femPart->connectivities( elmIdx );
|
|
|
|
cvf::Vec3d v0( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[0]]] );
|
|
cvf::Vec3d v1( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[1]]] );
|
|
cvf::Vec3d v2( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[2]]] );
|
|
cvf::Vec3d v3( nodeCoords[elmNodeIndices[elementLocalIndicesForFace[3]]] );
|
|
|
|
std::vector<size_t> nodeResIdx( 4, cvf::UNDEFINED_SIZE_T );
|
|
|
|
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
|
|
{
|
|
if ( resultPosType == RIG_ELEMENT_NODAL_FACE )
|
|
{
|
|
nodeResIdx[i] = gridResultIndexFace( elmIdx, cellFace, static_cast<int>( i ) );
|
|
}
|
|
else
|
|
{
|
|
nodeResIdx[i] = femPart->resultValueIdxFromResultPosType( resultPosType,
|
|
static_cast<int>( elmIdx ),
|
|
elementLocalIndicesForFace[i] );
|
|
}
|
|
}
|
|
|
|
std::vector<T> nodeResultValues;
|
|
nodeResultValues.reserve( 4 );
|
|
if ( resultPosType == RIG_ELEMENT_NODAL && averageNodeElementResults )
|
|
{
|
|
// Estimate nodal values as the average of the node values from each connected element.
|
|
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
|
|
{
|
|
int nodeIndex = femPart->nodeIdxFromElementNodeResultIdx( nodeResIdx[i] );
|
|
const std::vector<int>& elements = femPart->elementsUsingNode( nodeIndex );
|
|
const std::vector<unsigned char>& localIndices = femPart->elementLocalIndicesForNode( nodeIndex );
|
|
size_t otherGridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType,
|
|
elements[0],
|
|
static_cast<int>(
|
|
localIndices[0] ) );
|
|
T nodeResultValue = gridResultValues[otherGridResultValueIdx];
|
|
for ( size_t j = 1; j < elements.size(); ++j )
|
|
{
|
|
otherGridResultValueIdx = femPart->resultValueIdxFromResultPosType( resultPosType,
|
|
elements[j],
|
|
static_cast<int>( localIndices[j] ) );
|
|
nodeResultValue = nodeResultValue + gridResultValues[otherGridResultValueIdx];
|
|
}
|
|
nodeResultValue = nodeResultValue * ( 1.0 / elements.size() );
|
|
nodeResultValues.push_back( nodeResultValue );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for ( size_t i = 0; i < nodeResIdx.size(); ++i )
|
|
{
|
|
nodeResultValues.push_back( gridResultValues[nodeResIdx[i]] );
|
|
}
|
|
}
|
|
|
|
T interpolatedValue = cvf::GeometryTools::interpolateQuad<T>( v0,
|
|
nodeResultValues[0],
|
|
v1,
|
|
nodeResultValues[1],
|
|
v2,
|
|
nodeResultValues[2],
|
|
v3,
|
|
nodeResultValues[3],
|
|
m_intersections[intersectionIdx] );
|
|
|
|
return interpolatedValue;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
size_t RigGeoMechWellLogExtractor::gridResultIndexFace( size_t elementIdx,
|
|
cvf::StructGridInterface::FaceType cellFace,
|
|
int faceLocalNodeIdx ) const
|
|
{
|
|
CVF_ASSERT( cellFace != cvf::StructGridInterface::NO_FACE && faceLocalNodeIdx < 4 );
|
|
return elementIdx * 24 + static_cast<int>( cellFace ) * 4 + faceLocalNodeIdx;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigGeoMechWellLogExtractor::calculateIntersection()
|
|
{
|
|
CVF_ASSERT( m_caseData->femParts()->partCount() == 1 );
|
|
|
|
std::map<RigMDCellIdxEnterLeaveKey, HexIntersectionInfo> uniqueIntersections;
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
|
|
for ( size_t wpp = 0; wpp < m_wellPath->m_wellPathPoints.size() - 1; ++wpp )
|
|
{
|
|
std::vector<HexIntersectionInfo> intersections;
|
|
cvf::Vec3d p1 = m_wellPath->m_wellPathPoints[wpp];
|
|
cvf::Vec3d p2 = m_wellPath->m_wellPathPoints[wpp + 1];
|
|
|
|
cvf::BoundingBox bb;
|
|
|
|
bb.add( p1 );
|
|
bb.add( p2 );
|
|
|
|
std::vector<size_t> closeCells = findCloseCells( bb );
|
|
|
|
cvf::Vec3d hexCorners[8];
|
|
for ( size_t ccIdx = 0; ccIdx < closeCells.size(); ++ccIdx )
|
|
{
|
|
RigElementType elmType = femPart->elementType( closeCells[ccIdx] );
|
|
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
|
|
|
|
const int* cornerIndices = femPart->connectivities( closeCells[ccIdx] );
|
|
|
|
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
|
|
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
|
|
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
|
|
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
|
|
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
|
|
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
|
|
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
|
|
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
|
|
|
|
// int intersectionCount = RigHexIntersector::lineHexCellIntersection(p1, p2, hexCorners,
|
|
// closeCells[ccIdx], &intersections);
|
|
RigHexIntersectionTools::lineHexCellIntersection( p1, p2, hexCorners, closeCells[ccIdx], &intersections );
|
|
}
|
|
|
|
// Now, with all the intersections of this piece of line, we need to
|
|
// sort them in order, and set the measured depth and corresponding cell index
|
|
|
|
// Inserting the intersections in this map will remove identical intersections
|
|
// and sort them according to MD, CellIdx, Leave/enter
|
|
|
|
double md1 = m_wellPath->m_measuredDepths[wpp];
|
|
double md2 = m_wellPath->m_measuredDepths[wpp + 1];
|
|
|
|
insertIntersectionsInMap( intersections, p1, md1, p2, md2, &uniqueIntersections );
|
|
}
|
|
|
|
this->populateReturnArrays( uniqueIntersections );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<size_t> RigGeoMechWellLogExtractor::findCloseCells( const cvf::BoundingBox& bb )
|
|
{
|
|
std::vector<size_t> closeCells;
|
|
|
|
if ( m_caseData->femParts()->partCount() )
|
|
{
|
|
m_caseData->femParts()->part( 0 )->findIntersectingCells( bb, &closeCells );
|
|
}
|
|
return closeCells;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d RigGeoMechWellLogExtractor::calculateLengthInCell( size_t cellIndex,
|
|
const cvf::Vec3d& startPoint,
|
|
const cvf::Vec3d& endPoint ) const
|
|
{
|
|
std::array<cvf::Vec3d, 8> hexCorners;
|
|
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
const int* cornerIndices = femPart->connectivities( cellIndex );
|
|
|
|
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
|
|
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
|
|
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
|
|
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
|
|
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
|
|
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
|
|
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
|
|
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
|
|
|
|
return RigWellPathIntersectionTools::calculateLengthInCell( hexCorners, startPoint, endPoint );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d RigGeoMechWellLogExtractor::calculateWellPathTangent( int64_t intersectionIdx,
|
|
WellPathTangentCalculation calculationType ) const
|
|
{
|
|
if ( calculationType == TangentFollowWellPathSegments )
|
|
{
|
|
cvf::Vec3d segmentStart, segmentEnd;
|
|
m_wellPath->twoClosestPoints( m_intersections[intersectionIdx], &segmentStart, &segmentEnd );
|
|
return ( segmentEnd - segmentStart ).getNormalized();
|
|
}
|
|
else
|
|
{
|
|
cvf::Vec3d wellPathTangent;
|
|
if ( intersectionIdx % 2 == 0 )
|
|
{
|
|
wellPathTangent = m_intersections[intersectionIdx + 1] - m_intersections[intersectionIdx];
|
|
}
|
|
else
|
|
{
|
|
wellPathTangent = m_intersections[intersectionIdx] - m_intersections[intersectionIdx - 1];
|
|
}
|
|
CVF_ASSERT( wellPathTangent.length() > 1.0e-7 );
|
|
return wellPathTangent.getNormalized();
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
caf::Ten3d RigGeoMechWellLogExtractor::transformTensorToWellPathOrientation( const cvf::Vec3d& wellPathTangent,
|
|
const caf::Ten3d& tensor )
|
|
{
|
|
// Create local coordinate system for well path segment
|
|
cvf::Vec3d local_z = wellPathTangent;
|
|
cvf::Vec3d local_x = local_z.perpendicularVector().getNormalized();
|
|
cvf::Vec3d local_y = ( local_z ^ local_x ).getNormalized();
|
|
// Calculate the rotation matrix from global i, j, k to local x, y, z.
|
|
cvf::Mat4d rotationMatrix = cvf::Mat4d::fromCoordSystemAxes( &local_x, &local_y, &local_z );
|
|
|
|
return tensor.rotated( rotationMatrix.toMatrix3() );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3f RigGeoMechWellLogExtractor::cellCentroid( size_t intersectionIdx ) const
|
|
{
|
|
const RigFemPart* femPart = m_caseData->femParts()->part( 0 );
|
|
const std::vector<cvf::Vec3f>& nodeCoords = femPart->nodes().coordinates;
|
|
|
|
size_t elmIdx = m_intersectedCellsGlobIdx[intersectionIdx];
|
|
RigElementType elmType = femPart->elementType( elmIdx );
|
|
int elementNodeCount = RigFemTypes::elmentNodeCount( elmType );
|
|
|
|
const int* elmNodeIndices = femPart->connectivities( elmIdx );
|
|
|
|
cvf::Vec3f centroid( 0.0, 0.0, 0.0 );
|
|
for ( int i = 0; i < elementNodeCount; ++i )
|
|
{
|
|
centroid += nodeCoords[elmNodeIndices[i]];
|
|
}
|
|
return centroid / elementNodeCount;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::getWellLogSegmentValue( size_t intersectionIdx,
|
|
const std::vector<std::pair<double, double>>& wellLogValues ) const
|
|
{
|
|
if ( !wellLogValues.empty() )
|
|
{
|
|
double startMD, endMD;
|
|
if ( intersectionIdx % 2 == 0 )
|
|
{
|
|
startMD = m_intersectionMeasuredDepths[intersectionIdx];
|
|
endMD = m_intersectionMeasuredDepths[intersectionIdx + 1];
|
|
}
|
|
else
|
|
{
|
|
startMD = m_intersectionMeasuredDepths[intersectionIdx - 1];
|
|
endMD = m_intersectionMeasuredDepths[intersectionIdx];
|
|
}
|
|
|
|
RiaWeightedMeanCalculator<double> averageCalc;
|
|
for ( auto& depthAndValue : wellLogValues )
|
|
{
|
|
if ( cvf::Math::valueInRange( depthAndValue.first, startMD, endMD ) )
|
|
{
|
|
cvf::Vec3d position = m_wellPath->interpolatedPointAlongWellPath( depthAndValue.first );
|
|
cvf::Vec3d centroid( cellCentroid( intersectionIdx ) );
|
|
double weight = 1.0;
|
|
double dist = ( position - centroid ).length();
|
|
if ( dist > 1.0 )
|
|
{
|
|
weight = 1.0 / dist;
|
|
}
|
|
averageCalc.addValueAndWeight( depthAndValue.second, weight );
|
|
}
|
|
}
|
|
if ( averageCalc.validAggregatedWeight() )
|
|
{
|
|
return averageCalc.weightedMean();
|
|
}
|
|
}
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigGeoMechWellLogExtractor::pascalToBar( double pascalValue )
|
|
{
|
|
return pascalValue * 1.0e-5;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename T>
|
|
bool RigGeoMechWellLogExtractor::averageIntersectionValuesToSegmentValue( size_t intersectionIdx,
|
|
const std::vector<T>& values,
|
|
const T& invalidValue,
|
|
T* averagedCellValue ) const
|
|
{
|
|
CVF_ASSERT( values.size() >= 2 );
|
|
|
|
*averagedCellValue = invalidValue;
|
|
|
|
T value1, value2;
|
|
cvf::Vec3d centroid( cellCentroid( intersectionIdx ) );
|
|
double dist1 = 0.0, dist2 = 0.0;
|
|
if ( intersectionIdx % 2 == 0 )
|
|
{
|
|
value1 = values[intersectionIdx];
|
|
value2 = values[intersectionIdx + 1];
|
|
|
|
dist1 = ( centroid - m_intersections[intersectionIdx] ).length();
|
|
dist2 = ( centroid - m_intersections[intersectionIdx + 1] ).length();
|
|
}
|
|
else
|
|
{
|
|
value1 = values[intersectionIdx - 1];
|
|
value2 = values[intersectionIdx];
|
|
|
|
dist1 = ( centroid - m_intersections[intersectionIdx - 1] ).length();
|
|
dist2 = ( centroid - m_intersections[intersectionIdx] ).length();
|
|
}
|
|
|
|
if ( invalidValue == value1 || invalidValue == value2 )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
RiaWeightedMeanCalculator<T> averageCalc;
|
|
averageCalc.addValueAndWeight( value1, dist2 );
|
|
averageCalc.addValueAndWeight( value2, dist1 );
|
|
if ( averageCalc.validAggregatedWeight() )
|
|
{
|
|
*averagedCellValue = averageCalc.weightedMean();
|
|
}
|
|
return true;
|
|
}
|