mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-08 23:23:01 -06:00
59ca0b943c
* Add readability-simplify-boolean-expr * Fixes based on review
1030 lines
44 KiB
C++
1030 lines
44 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) Statoil ASA
|
|
// Copyright (C) Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <cmath>
|
|
|
|
namespace cvf
|
|
{
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename Vec3Type>
|
|
Vec3Type GeometryTools::computePolygonCenter( const std::vector<Vec3Type>& polygon )
|
|
{
|
|
Vec3Type s;
|
|
|
|
for ( size_t i = 0; i < polygon.size(); i++ )
|
|
{
|
|
s += polygon[i];
|
|
}
|
|
s /= polygon.size();
|
|
return s;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename DataType>
|
|
DataType GeometryTools::interpolateQuad( const cvf::Vec3d& v1,
|
|
DataType s1,
|
|
const cvf::Vec3d& v2,
|
|
DataType s2,
|
|
const cvf::Vec3d& v3,
|
|
DataType s3,
|
|
const cvf::Vec3d& v4,
|
|
DataType s4,
|
|
const cvf::Vec3d& point )
|
|
{
|
|
cvf::Vec4d bc = barycentricCoords( v1, v2, v3, v4, point );
|
|
|
|
return s1 * bc[0] + s2 * bc[1] + s3 * bc[2] + s4 * bc[3];
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Inserts the vertex into the polygon if it fits along one of the edges within the tolerance.
|
|
/// The method returns true if it was inserted, or if it was already in the polygon, or if it was
|
|
/// within the tolerance of an existing vertex in the polygon.
|
|
/// In the latter situation it replaces the previous vertex in the polygon.
|
|
///
|
|
/// Todo: If a vertex is replaced, the VxToCv map in TimeStepGeometry should be updated
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename VerticeArrayType, typename IndexType>
|
|
bool GeometryTools::insertVertexInPolygon( std::vector<IndexType>* polygon,
|
|
ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> nodeCoords,
|
|
IndexType vertexIndex,
|
|
double tolerance )
|
|
{
|
|
CVF_ASSERT( polygon );
|
|
|
|
// Check if vertex is directly included already
|
|
|
|
for ( typename std::vector<IndexType>::iterator it = polygon->begin(); it != polygon->end(); ++it )
|
|
{
|
|
if ( *it == vertexIndex ) return true;
|
|
}
|
|
|
|
#if 1
|
|
// Check if the new point is within tolerance of one of the polygon vertices
|
|
|
|
bool existsOrInserted = false;
|
|
for ( typename std::vector<IndexType>::iterator it = polygon->begin(); it != polygon->end(); ++it )
|
|
{
|
|
if ( ( nodeCoords[*it] - nodeCoords[vertexIndex] ).length() < tolerance )
|
|
{
|
|
if ( vertexIndex < *it ) *it = vertexIndex;
|
|
existsOrInserted = true;
|
|
}
|
|
}
|
|
|
|
if ( existsOrInserted ) return true;
|
|
#endif
|
|
|
|
// Copy the start polygon to a list
|
|
|
|
std::list<IndexType> listPolygon;
|
|
for ( size_t pcIdx = 0; pcIdx < polygon->size(); ++pcIdx )
|
|
{
|
|
listPolygon.push_back( ( *polygon )[pcIdx] );
|
|
}
|
|
|
|
// Insert vertex in polygon if the distance to one of the edges is small enough
|
|
|
|
typename std::list<IndexType>::iterator it2;
|
|
typename std::list<IndexType>::iterator insertBefore;
|
|
|
|
for ( typename std::list<IndexType>::iterator it = listPolygon.begin(); it != listPolygon.end(); ++it )
|
|
{
|
|
it2 = it;
|
|
++it2;
|
|
insertBefore = it2;
|
|
if ( it2 == listPolygon.end() ) it2 = listPolygon.begin();
|
|
|
|
double sqDistToLine = GeometryTools::linePointSquareDist( nodeCoords[*it], nodeCoords[*it2], nodeCoords[vertexIndex] );
|
|
if ( fabs( sqDistToLine ) < tolerance * tolerance )
|
|
{
|
|
it = listPolygon.insert( insertBefore, vertexIndex );
|
|
existsOrInserted = true;
|
|
}
|
|
}
|
|
|
|
// Write polygon back into the vector
|
|
|
|
polygon->clear();
|
|
for ( typename std::list<IndexType>::iterator it = listPolygon.begin(); it != listPolygon.end(); ++it )
|
|
{
|
|
polygon->push_back( *it );
|
|
}
|
|
|
|
return existsOrInserted;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// \brief Test if a point touches a polygon within the specified tolerance
|
|
///
|
|
/// \param polygonNorm Polygon normal
|
|
/// \param pPolygonVerts Array of polygon vertice coordinates
|
|
/// \param piVertexIndices Array of integer node indices for this polygon
|
|
/// \param iNumVerts Number of vertices in polygon
|
|
/// \param point The point to be checked
|
|
/// \param tolerance Tolerance in length
|
|
/// \param touchedEdgeIndex returns -1 if point is inside, and edge index if point touches an edge.
|
|
/// \return true if point lies inside or on the border of the polygon.
|
|
///
|
|
/// \assumpt Assumes that the polygon is planar
|
|
/// \comment First check if point is on an edge, Then check if it is inside by
|
|
/// counting the number of times a ray from point along positive X axis
|
|
/// crosses an edge. Odd number says inside.
|
|
/// \author SP (really by Eric Haines) and JJS
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename VerticeArrayType, typename PolygonArrayType, typename IndexType>
|
|
bool GeometryTools::isPointTouchingIndexedPolygon( const cvf::Vec3d& polygonNormal,
|
|
cvf::ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> vertices,
|
|
cvf::ArrayWrapperConst<PolygonArrayType, IndexType> indices,
|
|
const cvf::Vec3d& point,
|
|
int* touchedEdgeIndex,
|
|
double tolerance )
|
|
{
|
|
size_t numIndices = indices.size();
|
|
|
|
int Z = findClosestAxis( polygonNormal );
|
|
int X = ( Z + 1 ) % 3;
|
|
int Y = ( Z + 2 ) % 3;
|
|
|
|
int crossings;
|
|
|
|
int xBelowVx0;
|
|
int yBelowVx0;
|
|
int yBelowVx1 = 0;
|
|
|
|
const double* vtx0;
|
|
const double* vtx1 = nullptr;
|
|
|
|
double dv0;
|
|
|
|
cvf::uint j;
|
|
|
|
// Check if point is on an edge or vertex
|
|
size_t firstIdx;
|
|
size_t secondIdx;
|
|
|
|
CVF_TIGHT_ASSERT( touchedEdgeIndex );
|
|
|
|
*touchedEdgeIndex = -1;
|
|
for ( firstIdx = 0, secondIdx = 1; firstIdx < numIndices; ++firstIdx, ++secondIdx )
|
|
{
|
|
if ( secondIdx >= numIndices ) secondIdx = 0;
|
|
const cvf::Vec3d& vx0 = vertices[indices[firstIdx]];
|
|
const cvf::Vec3d& vx1 = vertices[indices[secondIdx]];
|
|
|
|
double sqDist = GeometryTools::linePointSquareDist( vx0, vx1, point );
|
|
if ( sqDist < tolerance * tolerance )
|
|
{
|
|
*touchedEdgeIndex = static_cast<int>( firstIdx );
|
|
return true;
|
|
}
|
|
}
|
|
|
|
vtx0 = vertices[indices[numIndices - 1]].ptr();
|
|
|
|
// get test bit for above/below Y axis. Y of Point is under Y of vtx0
|
|
yBelowVx0 = ( dv0 = vtx0[Y] - point[Y] ) >= 0.0;
|
|
|
|
crossings = 0;
|
|
for ( j = 0; j < numIndices; j++ )
|
|
{
|
|
// cleverness: bobble between filling endpoints of edges, so that the previous edge's shared endpoint is
|
|
// maintained.
|
|
if ( j & 0x1 )
|
|
{
|
|
vtx0 = vertices[indices[j]].ptr();
|
|
yBelowVx0 = ( dv0 = vtx0[Y] - point[Y] ) >= 0.0;
|
|
}
|
|
else
|
|
{
|
|
vtx1 = vertices[indices[j]].ptr();
|
|
yBelowVx1 = ( vtx1[Y] >= point[Y] );
|
|
}
|
|
|
|
// check if Y of point is between Y of Vx0 and Vx1
|
|
if ( yBelowVx0 != yBelowVx1 )
|
|
{
|
|
// check if X of point is not between X of Vx0 and Vx1
|
|
if ( ( xBelowVx0 = ( vtx0[X] >= point[X] ) ) == ( vtx1[X] >= point[X] ) )
|
|
{
|
|
if ( xBelowVx0 ) crossings++;
|
|
}
|
|
else
|
|
{
|
|
// compute intersection of polygon segment with X ray, note if > point's X.
|
|
crossings += ( vtx0[X] - dv0 * ( vtx1[X] - vtx0[X] ) / ( vtx1[Y] - vtx0[Y] ) ) >= point[X];
|
|
}
|
|
}
|
|
}
|
|
|
|
// test if crossings is odd. If we care about its winding number > 0, then just: inside_flag = crossings > 0;
|
|
return ( crossings & 0x01 ) != 0;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Returns true if we get an actual polygon
|
|
/// The returned polygon will keep the winding from the first face.
|
|
/// The second face must have opposite winding of the first
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename VerticeArrayType, typename IndexType>
|
|
bool GeometryTools::calculateOverlapPolygonOfTwoQuads( std::vector<IndexType>* polygon,
|
|
std::vector<cvf::Vec3d>* createdVertexes,
|
|
EdgeIntersectStorage<IndexType>* edgeIntersectionStorage,
|
|
ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> nodes,
|
|
const IndexType cv1CubeFaceIndices[4],
|
|
const IndexType cv2CubeFaceIndices[4],
|
|
double tolerance )
|
|
{
|
|
CVF_ASSERT( polygon );
|
|
CVF_ASSERT( createdVertexes );
|
|
|
|
// Topology analysis
|
|
|
|
IndexType newVertexIndex = static_cast<IndexType>( nodes.size() + createdVertexes->size() );
|
|
|
|
bool cv1VxTouchCv2[4] = { false, false, false, false };
|
|
bool cv2VxTouchCv1[4] = { false, false, false, false };
|
|
int cv1VxTouchCv2Edge[4] = { -1, -1, -1, -1 };
|
|
int cv2VxTouchCv1Edge[4] = { -1, -1, -1, -1 };
|
|
|
|
int cv1Idx, cv2Idx;
|
|
int numMatchedNodes = 0;
|
|
|
|
// First check for complete topological match.
|
|
|
|
for ( cv1Idx = 0; cv1Idx < 4; ++cv1Idx )
|
|
{
|
|
for ( cv2Idx = 0; cv2Idx < 4; ++cv2Idx )
|
|
{
|
|
if ( cv1CubeFaceIndices[cv1Idx] == cv2CubeFaceIndices[cv2Idx] )
|
|
{
|
|
cv1VxTouchCv2[cv1Idx] = true;
|
|
cv2VxTouchCv1[cv2Idx] = true;
|
|
++numMatchedNodes;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( numMatchedNodes >= 4 ) // Todo: Handle collapsed cells
|
|
{
|
|
int k;
|
|
for ( k = 0; k < 4; ++k )
|
|
{
|
|
polygon->push_back( cv1CubeFaceIndices[k] );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
cvf::Vec3d diag1 = nodes[cv1CubeFaceIndices[2]] - nodes[cv1CubeFaceIndices[0]];
|
|
cvf::Vec3d diag2 = nodes[cv1CubeFaceIndices[3]] - nodes[cv1CubeFaceIndices[1]];
|
|
cvf::Vec3d normal = diag1 ^ diag2;
|
|
int numCv1VxesOnCv2 = numMatchedNodes;
|
|
int numCv2VxesOnCv1 = numMatchedNodes;
|
|
|
|
for ( cv1Idx = 0; cv1Idx < 4; ++cv1Idx )
|
|
{
|
|
if ( !cv1VxTouchCv2[cv1Idx] )
|
|
{
|
|
cv1VxTouchCv2[cv1Idx] = GeometryTools::isPointTouchingIndexedPolygon( normal,
|
|
nodes,
|
|
wrapArrayConst( cv2CubeFaceIndices, 4 ),
|
|
nodes[cv1CubeFaceIndices[cv1Idx]],
|
|
&( cv1VxTouchCv2Edge[cv1Idx] ),
|
|
tolerance );
|
|
if ( cv1VxTouchCv2[cv1Idx] ) ++numCv1VxesOnCv2;
|
|
}
|
|
|
|
if ( !cv2VxTouchCv1[cv1Idx] )
|
|
{
|
|
cv2VxTouchCv1[cv1Idx] = GeometryTools::isPointTouchingIndexedPolygon( normal,
|
|
nodes,
|
|
wrapArrayConst( cv1CubeFaceIndices, 4 ),
|
|
nodes[cv2CubeFaceIndices[cv1Idx]],
|
|
&( cv2VxTouchCv1Edge[cv1Idx] ),
|
|
tolerance );
|
|
if ( cv2VxTouchCv1[cv1Idx] ) ++numCv2VxesOnCv1;
|
|
}
|
|
}
|
|
|
|
// Handle case where one of the faces are completely covered by the other
|
|
|
|
if ( numCv1VxesOnCv2 >= 4 )
|
|
{
|
|
int k;
|
|
for ( k = 0; k < 4; ++k )
|
|
{
|
|
polygon->push_back( cv1CubeFaceIndices[k] );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if ( numCv2VxesOnCv1 >= 4 )
|
|
{
|
|
int k;
|
|
for ( k = 3; k >= 0; --k ) // Return opposite winding, to match winding of face 1
|
|
{
|
|
polygon->push_back( cv2CubeFaceIndices[k] );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle partial coverage
|
|
// Algorithm outline as follows:
|
|
|
|
// Loop over edges in the face of Cv1. Intersect each one with all the edges of the Cv2 face.
|
|
// Add first point of the cv1 edge to polygon if it really touches Cv2 ( touch of edge is considered as not
|
|
// touching) Add each intersection point along the Cv1 edge if present and finally: if the cv1 edge is going out of
|
|
// cv2, the add the cv2 vertexes from that intersection as long as they touch cv1.
|
|
|
|
int nextCv1Idx = 1;
|
|
for ( cv1Idx = 0; cv1Idx < 4; ++cv1Idx, ++nextCv1Idx )
|
|
{
|
|
if ( nextCv1Idx > 3 ) nextCv1Idx = 0;
|
|
|
|
if ( cv1VxTouchCv2[cv1Idx] && cv1VxTouchCv2Edge[cv1Idx] == -1 ) // Start of cv1 edge is touching inside the cv2
|
|
// polygon (not on an cv2 edge)
|
|
{
|
|
if ( polygon->empty() || polygon->back() != cv1CubeFaceIndices[cv1Idx] )
|
|
{
|
|
polygon->push_back( cv1CubeFaceIndices[cv1Idx] );
|
|
}
|
|
|
|
if ( cv1VxTouchCv2[nextCv1Idx] && cv1VxTouchCv2Edge[nextCv1Idx] == -1 )
|
|
{
|
|
// Both ends of this cv1 edge is touching inside(not on an edge) cv2 polygon, no intersections possible
|
|
// (assuming convex cube-face) Continue with next Cv1-edge.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Find intersection(s) on this edge
|
|
|
|
std::vector<IndexType> intersectionVxIndices;
|
|
std::vector<int> intersectedCv2EdgeIdxs;
|
|
std::vector<double> intersectionFractionsAlongEdge;
|
|
|
|
int nextCv2Idx = 1;
|
|
for ( cv2Idx = 0; cv2Idx < 4; ++cv2Idx, ++nextCv2Idx )
|
|
{
|
|
if ( nextCv2Idx > 3 ) nextCv2Idx = 0;
|
|
|
|
// Find a possible real intersection point.
|
|
|
|
cvf::Vec3d intersection( 0, 0, 0 );
|
|
double fractionAlongEdge1;
|
|
GeometryTools::IntersectionStatus intersectStatus = GeometryTools::NO_INTERSECTION;
|
|
IndexType intersectionVxIndex = cvf::UNDEFINED_UINT;
|
|
|
|
// First handle some "trivial" ones to ease the burden for the real intersection calculation
|
|
// It could be tested whether it really is necessary to do
|
|
if ( cv1VxTouchCv2Edge[cv1Idx] == cv2Idx && cv1VxTouchCv2Edge[nextCv1Idx] == cv2Idx )
|
|
{
|
|
intersectStatus = GeometryTools::LINES_OVERLAP;
|
|
fractionAlongEdge1 = 1;
|
|
intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
}
|
|
else if ( cv1VxTouchCv2Edge[cv1Idx] == cv2Idx )
|
|
{
|
|
// When this happens, the cv1 vertex will already have been added to the polygon
|
|
// by the statements in the top of the cv1 edge loop. Should it be treated specially ?
|
|
intersectStatus = GeometryTools::LINES_TOUCH;
|
|
fractionAlongEdge1 = 0;
|
|
intersectionVxIndex = cv1CubeFaceIndices[cv1Idx];
|
|
}
|
|
else if ( cv1VxTouchCv2Edge[nextCv1Idx] == cv2Idx )
|
|
{
|
|
intersectStatus = GeometryTools::LINES_TOUCH;
|
|
fractionAlongEdge1 = 1;
|
|
intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
}
|
|
else
|
|
{
|
|
double fractionAlongEdge2;
|
|
bool found = false;
|
|
if ( edgeIntersectionStorage )
|
|
found = edgeIntersectionStorage->findIntersection( cv1CubeFaceIndices[cv1Idx],
|
|
cv1CubeFaceIndices[nextCv1Idx],
|
|
cv2CubeFaceIndices[cv2Idx],
|
|
cv2CubeFaceIndices[nextCv2Idx],
|
|
&intersectionVxIndex,
|
|
&intersectStatus,
|
|
&fractionAlongEdge1,
|
|
&fractionAlongEdge2 );
|
|
|
|
if ( !found )
|
|
{
|
|
intersectStatus = GeometryTools::inPlaneLineIntersect3D( normal,
|
|
nodes[cv1CubeFaceIndices[cv1Idx]],
|
|
nodes[cv1CubeFaceIndices[nextCv1Idx]],
|
|
nodes[cv2CubeFaceIndices[cv2Idx]],
|
|
nodes[cv2CubeFaceIndices[nextCv2Idx]],
|
|
&intersection,
|
|
&fractionAlongEdge1,
|
|
&fractionAlongEdge2,
|
|
tolerance );
|
|
|
|
switch ( intersectStatus )
|
|
{
|
|
case GeometryTools::LINES_CROSSES:
|
|
{
|
|
intersectionVxIndex = newVertexIndex;
|
|
createdVertexes->push_back( intersection );
|
|
++newVertexIndex;
|
|
}
|
|
break;
|
|
case GeometryTools::LINES_TOUCH:
|
|
{
|
|
if ( fractionAlongEdge1 <= 0.0 )
|
|
intersectionVxIndex = cv1CubeFaceIndices[cv1Idx];
|
|
else if ( fractionAlongEdge1 >= 1.0 )
|
|
intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
else if ( fractionAlongEdge2 <= 0.0 )
|
|
intersectionVxIndex = cv2CubeFaceIndices[cv2Idx];
|
|
else if ( fractionAlongEdge2 >= 1.0 )
|
|
intersectionVxIndex = cv2CubeFaceIndices[nextCv2Idx];
|
|
else
|
|
CVF_ASSERT( false ); // Tolerance trouble
|
|
}
|
|
break;
|
|
case GeometryTools::LINES_OVERLAP:
|
|
{
|
|
if ( fractionAlongEdge1 <= 0.0 )
|
|
intersectionVxIndex = cv1CubeFaceIndices[cv1Idx];
|
|
else if ( fractionAlongEdge1 >= 1.0 )
|
|
intersectionVxIndex = cv1CubeFaceIndices[nextCv1Idx];
|
|
else if ( fractionAlongEdge2 <= 0.0 )
|
|
intersectionVxIndex = cv2CubeFaceIndices[cv2Idx];
|
|
else if ( fractionAlongEdge2 >= 1.0 )
|
|
intersectionVxIndex = cv2CubeFaceIndices[nextCv2Idx];
|
|
else
|
|
CVF_ASSERT( false ); // Tolerance trouble
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ( edgeIntersectionStorage )
|
|
edgeIntersectionStorage->addIntersection( cv1CubeFaceIndices[cv1Idx],
|
|
cv1CubeFaceIndices[nextCv1Idx],
|
|
cv2CubeFaceIndices[cv2Idx],
|
|
cv2CubeFaceIndices[nextCv2Idx],
|
|
intersectionVxIndex,
|
|
intersectStatus,
|
|
fractionAlongEdge1,
|
|
fractionAlongEdge2 );
|
|
}
|
|
}
|
|
|
|
// Store data for each intersection along the Cv1-edge
|
|
|
|
if ( ( intersectStatus == GeometryTools::LINES_CROSSES ) || ( intersectStatus == GeometryTools::LINES_TOUCH ) ||
|
|
( intersectStatus == GeometryTools::LINES_OVERLAP ) )
|
|
{
|
|
CVF_ASSERT( intersectionVxIndex != cvf::UNDEFINED_UINT );
|
|
|
|
intersectionFractionsAlongEdge.push_back( fractionAlongEdge1 );
|
|
intersectedCv2EdgeIdxs.push_back( cv2Idx );
|
|
intersectionVxIndices.push_back( intersectionVxIndex );
|
|
}
|
|
}
|
|
|
|
// Insert the intersections into the polygon in the correct order along the Cv1 edge.
|
|
// Find the last intersection in order to possibly continue the polygon along Cv2 into Cv1
|
|
|
|
size_t i;
|
|
size_t lastIntersection = std::numeric_limits<size_t>::max();
|
|
double largestFraction = -1;
|
|
for ( i = 0; i < intersectionFractionsAlongEdge.size(); ++i )
|
|
{
|
|
if ( intersectionFractionsAlongEdge[i] > largestFraction )
|
|
{
|
|
lastIntersection = i;
|
|
largestFraction = intersectionFractionsAlongEdge[i];
|
|
}
|
|
}
|
|
|
|
// Insert indices to the new intersection vertices into the polygon of
|
|
// this connection according to fraction along edge
|
|
|
|
std::map<double, IndexType> sortingMap;
|
|
for ( i = 0; i < intersectionFractionsAlongEdge.size(); ++i )
|
|
{
|
|
sortingMap[intersectionFractionsAlongEdge[i]] = intersectionVxIndices[i];
|
|
}
|
|
|
|
typename std::map<double, IndexType>::iterator it;
|
|
for ( it = sortingMap.begin(); it != sortingMap.end(); ++it )
|
|
{
|
|
if ( polygon->empty() || polygon->back() != it->second )
|
|
{
|
|
polygon->push_back( it->second );
|
|
}
|
|
}
|
|
|
|
// Then if the Cv1 edge is going out of Cv2, add to the polygon, all the Cv2 face vertex-indices
|
|
// from the intersection that touches Cv1.
|
|
|
|
// if cv1 edge in any way touches cv2 and ends up outside, it went out.
|
|
|
|
/*
|
|
if cv1 edge is going out of cv2 then
|
|
if intersected cv2 edge has endpoint touching cv1 then
|
|
add endpoint to polygon. continue to add next endpoint until it does not touch Cv1
|
|
*/
|
|
if ( !cv1VxTouchCv2[nextCv1Idx] && ( cv1VxTouchCv2[cv1Idx] || ( intersectedCv2EdgeIdxs.size() ) ) ) // Two touches along edge also
|
|
// qualifies
|
|
{
|
|
if ( lastIntersection < intersectedCv2EdgeIdxs.size() )
|
|
{
|
|
cv2Idx = intersectedCv2EdgeIdxs[lastIntersection];
|
|
int count = 0;
|
|
// Continue the polygon along the Cv2 edges as long as they touch cv1.
|
|
// Depending on the faces having opposite winding, which is guaranteed as long as
|
|
// no intersecting CVs share a connection
|
|
while ( cv2VxTouchCv1[cv2Idx] && count < 4 && ( cv2VxTouchCv1Edge[cv2Idx] == -1 ) ) // Touch of edge is
|
|
// regarded as being
|
|
// outside, so we
|
|
// must stop
|
|
{
|
|
if ( polygon->empty() || polygon->back() != cv2CubeFaceIndices[cv2Idx] )
|
|
{
|
|
polygon->push_back( cv2CubeFaceIndices[cv2Idx] );
|
|
}
|
|
--cv2Idx;
|
|
if ( cv2Idx < 0 ) cv2Idx = 3;
|
|
++count;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
CVF_ASSERT( lastIntersection < intersectedCv2EdgeIdxs.size() );
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( polygon->size() > 2 )
|
|
{
|
|
if ( polygon->back() == polygon->front() ) polygon->pop_back();
|
|
}
|
|
|
|
// Sanity checks
|
|
if ( polygon->size() < 3 )
|
|
{
|
|
// cvf::Trace::show(cvf::String("Degenerated connection polygon detected. (Less than 3 vertexes) Cv's probably
|
|
// not in contact: %1 , %2").arg(m_ownerCvId).arg(m_neighborCvId));
|
|
polygon->clear();
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// This method assumes that all intersection and mid edge vertexes are created an are already
|
|
/// merged into all the polygons. We can also assume that all the connection polygons are completely
|
|
/// inside (or sharing edges with) the cube face polygon initially
|
|
//--------------------------------------------------------------------------------------------------
|
|
#define DEBUG_PRINT 0
|
|
|
|
// template <typename NodeArrayType, typename NodeType, typename IndicesArrayType, typename IndicesType>
|
|
// void setup( ArrayWrapper<NodeArrayType, NodeType> nodeArray, ArrayWrapper<IndicesArrayType, IndicesType> indices)
|
|
template <typename VerticeArrayType, typename PolygonArrayType, typename IndexType>
|
|
void GeometryTools::calculatePartiallyFreeCubeFacePolygon( ArrayWrapperConst<VerticeArrayType, cvf::Vec3d> nodeCoords,
|
|
ArrayWrapperConst<PolygonArrayType, IndexType> completeFacePolygon,
|
|
const cvf::Vec3d& faceNormal,
|
|
const std::vector<std::vector<IndexType>*>& faceOverlapPolygons,
|
|
const std::vector<bool>& faceOverlapPolygonWindingSameAsCubeFaceFlags,
|
|
std::vector<IndexType>* partialFacePolygon,
|
|
bool* m_partiallyFreeCubeFaceHasHoles )
|
|
{
|
|
// Vertex Index to position in polygon
|
|
typedef std::map<IndexType, typename std::vector<IndexType>::const_iterator> VxIdxToPolygonPositionMap;
|
|
|
|
CVF_ASSERT( m_partiallyFreeCubeFaceHasHoles );
|
|
CVF_ASSERT( partialFacePolygon != NULL );
|
|
|
|
// Copy the start polygon
|
|
std::list<IndexType> resultPolygon;
|
|
for ( size_t pcIdx = 0; pcIdx < completeFacePolygon.size(); ++pcIdx )
|
|
{
|
|
resultPolygon.push_back( completeFacePolygon[pcIdx] );
|
|
}
|
|
|
|
// First build search maps to fast find whether and where an index is positioned in a polygon
|
|
// Map from Vertex-index to position in polygon
|
|
|
|
std::vector<VxIdxToPolygonPositionMap> polygonSearchMaps;
|
|
std::vector<bool> isConnectionPolygonMerged;
|
|
|
|
polygonSearchMaps.resize( faceOverlapPolygons.size() );
|
|
isConnectionPolygonMerged.resize( faceOverlapPolygons.size(), false );
|
|
|
|
// Build search maps
|
|
{
|
|
size_t count;
|
|
for ( size_t i = 0; i < faceOverlapPolygons.size(); ++i )
|
|
{
|
|
count = 0;
|
|
for ( typename std::vector<IndexType>::const_iterator pcIt = faceOverlapPolygons[i]->begin();
|
|
pcIt != faceOverlapPolygons[i]->end();
|
|
++pcIt )
|
|
{
|
|
polygonSearchMaps[i][*pcIt] = pcIt;
|
|
++count;
|
|
}
|
|
|
|
if ( count < 3 ) isConnectionPolygonMerged[i] = true; // Ignore false polygons
|
|
}
|
|
}
|
|
|
|
#if DEBUG_PRINT
|
|
{
|
|
cvf::Trace::show( "Circumference polygon: " );
|
|
std::list<IndexType>::const_iterator polIt;
|
|
for ( polIt = resultPolygon.begin(); polIt != resultPolygon.end(); ++polIt )
|
|
{
|
|
cvf::Trace::show( cvf::String( "%1 \t%2 %3 %4" )
|
|
.arg( (int)( *polIt ) )
|
|
.arg( nodeCoords[*polIt].x() )
|
|
.arg( nodeCoords[*polIt].y() )
|
|
.arg( nodeCoords[*polIt].z() ) );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if DEBUG_PRINT
|
|
{
|
|
cvf::Trace::show( "Connection polygons: " );
|
|
for ( size_t cIdx = 0; cIdx < faceOverlapPolygons.size(); cIdx++ )
|
|
{
|
|
std::vector<IndexType>::const_iterator polIt;
|
|
cvf::Trace::show( "Connection " + cvf::String( (long long)cIdx ) );
|
|
for ( polIt = faceOverlapPolygons[cIdx]->begin(); polIt != faceOverlapPolygons[cIdx]->end(); ++polIt )
|
|
{
|
|
cvf::Trace::show( cvf::String( "%1 \t%2 %3 %4" )
|
|
.arg( (int)( *polIt ) )
|
|
.arg( nodeCoords[*polIt].x() )
|
|
.arg( nodeCoords[*polIt].y() )
|
|
.arg( nodeCoords[*polIt].z() ) );
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Merge connection polygons with the main polygon as long as one of them has something in common.
|
|
|
|
// For each vx in the m_freeFacePolygons[cubeFace] polygon .
|
|
// loop over all connections
|
|
// if it has the node in common and that the edge angle will decrease if inserting
|
|
// merge the connection polygon into the main polygon,
|
|
// and remove the connection polygon from the merge able connection polygons.
|
|
|
|
for ( typename std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end(); ++pIt )
|
|
{
|
|
// Set iterator to previous node in polygon
|
|
typename std::list<IndexType>::iterator prevPIt = pIt;
|
|
if ( prevPIt == resultPolygon.begin() ) prevPIt = resultPolygon.end();
|
|
--prevPIt;
|
|
|
|
cvf::Vec3d pToPrev = nodeCoords[*prevPIt] - nodeCoords[*pIt];
|
|
|
|
// Set iterator to next node in polygon. Used to insert before and as pointer to the next point
|
|
typename std::list<IndexType>::iterator nextPIt = pIt;
|
|
++nextPIt;
|
|
typename std::list<IndexType>::iterator insertBeforePIt = nextPIt;
|
|
if ( nextPIt == resultPolygon.end() ) nextPIt = resultPolygon.begin();
|
|
|
|
// Calculate existing edge to edge angle
|
|
|
|
cvf::Vec3d pToNext = nodeCoords[*nextPIt] - nodeCoords[*pIt];
|
|
double mainPolygonEdgeAngle = GeometryTools::getAngle( faceNormal, pToNext, pToPrev );
|
|
|
|
// Find connections containing the pIt vertex index. Merge them into the main polygon
|
|
|
|
for ( size_t opIdx = 0; opIdx < faceOverlapPolygons.size(); ++opIdx )
|
|
{
|
|
if ( isConnectionPolygonMerged[opIdx] ) continue; // Already merged
|
|
|
|
// Find position of pIt vertex index in the current connection polygon
|
|
typename VxIdxToPolygonPositionMap::iterator vxIndexPositionInPolygonIt = polygonSearchMaps[opIdx].find( *pIt );
|
|
|
|
if ( vxIndexPositionInPolygonIt != polygonSearchMaps[opIdx].end() )
|
|
{
|
|
// Merge the connection polygon into the main polygon
|
|
// if the angle prevPIt pIt nextPIt is larger than angle prevPIt pIt (startCPIt++)
|
|
|
|
typename std::vector<IndexType>::const_iterator startCPIt;
|
|
startCPIt = vxIndexPositionInPolygonIt->second;
|
|
|
|
// First vx to insert is the one after the match
|
|
|
|
bool hasSameWinding = faceOverlapPolygonWindingSameAsCubeFaceFlags[opIdx];
|
|
if ( hasSameWinding )
|
|
{
|
|
// Same winding as main polygon. We need to go the opposite way
|
|
if ( startCPIt == faceOverlapPolygons[opIdx]->begin() ) startCPIt = faceOverlapPolygons[opIdx]->end();
|
|
--startCPIt;
|
|
}
|
|
else
|
|
{
|
|
// Opposite winding. Go forward when merging
|
|
++startCPIt;
|
|
if ( startCPIt == faceOverlapPolygons[opIdx]->end() ) startCPIt = faceOverlapPolygons[opIdx]->begin();
|
|
}
|
|
|
|
// Calculate possible new edge-to-edge angle and test against existing angle
|
|
cvf::Vec3d pToStart = nodeCoords[*startCPIt] - nodeCoords[*pIt];
|
|
double candidatePolygonEdgeAngle = GeometryTools::getAngle( faceNormal, pToStart, pToPrev );
|
|
|
|
if ( candidatePolygonEdgeAngle < mainPolygonEdgeAngle )
|
|
{
|
|
// Merge ok
|
|
typename std::vector<IndexType>::const_iterator pcIt = startCPIt;
|
|
if ( hasSameWinding )
|
|
{
|
|
do
|
|
{
|
|
resultPolygon.insert( insertBeforePIt, ( *pcIt ) );
|
|
|
|
if ( pcIt == faceOverlapPolygons[opIdx]->begin() ) pcIt = faceOverlapPolygons[opIdx]->end();
|
|
--pcIt;
|
|
|
|
} while ( pcIt != startCPIt );
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
resultPolygon.insert( insertBeforePIt, ( *pcIt ) );
|
|
|
|
++pcIt;
|
|
if ( pcIt == faceOverlapPolygons[opIdx]->end() ) pcIt = faceOverlapPolygons[opIdx]->begin();
|
|
|
|
} while ( pcIt != startCPIt );
|
|
}
|
|
|
|
isConnectionPolygonMerged[opIdx] = true;
|
|
|
|
// Recalculate the next position to point into the new nodes
|
|
// Set iterator in the main polygon to insert before and to the next point
|
|
nextPIt = pIt;
|
|
++nextPIt;
|
|
insertBeforePIt = nextPIt;
|
|
if ( nextPIt == resultPolygon.end() ) nextPIt = resultPolygon.begin();
|
|
|
|
// Recalculate the existing edge to edge angle
|
|
pToNext = nodeCoords[*nextPIt] - nodeCoords[*pIt];
|
|
mainPolygonEdgeAngle = GeometryTools::getAngle( faceNormal, pToNext, pToPrev );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now remove all double edges
|
|
|
|
bool goneAround = false;
|
|
for ( typename std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end() && !goneAround; ++pIt )
|
|
{
|
|
// Set iterator to next node in polygon.
|
|
typename std::list<IndexType>::iterator nextPIt = pIt;
|
|
++nextPIt;
|
|
if ( nextPIt == resultPolygon.end() )
|
|
{
|
|
nextPIt = resultPolygon.begin();
|
|
goneAround = true; // Gone around polygon. Stop even if pIt is jumping over end()
|
|
}
|
|
|
|
// Set iterator to previous node in polygon
|
|
|
|
typename std::list<IndexType>::iterator prevPIt = pIt;
|
|
|
|
if ( prevPIt == resultPolygon.begin() ) prevPIt = resultPolygon.end();
|
|
--prevPIt;
|
|
|
|
// If previous and next node are the same, erase
|
|
while ( *nextPIt == *prevPIt )
|
|
{
|
|
resultPolygon.erase( pIt );
|
|
resultPolygon.erase( prevPIt );
|
|
|
|
if ( resultPolygon.begin() == resultPolygon.end() )
|
|
break; // Polygon has been completely removed. Nothing left. Break out of while
|
|
|
|
pIt = nextPIt;
|
|
++nextPIt;
|
|
if ( nextPIt == resultPolygon.end() )
|
|
{
|
|
nextPIt = resultPolygon.begin();
|
|
goneAround = true; // Gone around polygon pIt is jumping over end()
|
|
}
|
|
|
|
prevPIt = pIt;
|
|
if ( prevPIt == resultPolygon.begin() ) prevPIt = resultPolygon.end();
|
|
--prevPIt;
|
|
}
|
|
|
|
if ( resultPolygon.begin() == resultPolygon.end() )
|
|
break; // Polygon has been completely removed. Nothing left. Break out of for loop
|
|
}
|
|
|
|
// Check for holes
|
|
|
|
for ( size_t i = 0; i < isConnectionPolygonMerged.size(); ++i )
|
|
{
|
|
bool hasHoles = !isConnectionPolygonMerged[i];
|
|
if ( hasHoles )
|
|
{
|
|
*m_partiallyFreeCubeFaceHasHoles = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_PRINT
|
|
{
|
|
cvf::Trace::show( "Polygon: " );
|
|
for ( std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end(); ++pIt )
|
|
{
|
|
cvf::Trace::show( cvf::String( "%1 \t%2 %3 %4" )
|
|
.arg( (int)( *pIt ) )
|
|
.arg( nodeCoords[*pIt].x() )
|
|
.arg( nodeCoords[*pIt].y() )
|
|
.arg( nodeCoords[*pIt].z() ) );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Copy the result polygon to the output variable
|
|
|
|
partialFacePolygon->clear();
|
|
for ( typename std::list<IndexType>::iterator pIt = resultPolygon.begin(); pIt != resultPolygon.end(); ++pIt )
|
|
{
|
|
partialFacePolygon->push_back( *pIt );
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename IndexType>
|
|
void EdgeIntersectStorage<IndexType>::setVertexCount( size_t size )
|
|
{
|
|
m_edgeIntsectMap.resize( size );
|
|
}
|
|
|
|
template <typename IndexType>
|
|
void EdgeIntersectStorage<IndexType>::canonizeAddress( IndexType& e1P1,
|
|
IndexType& e1P2,
|
|
IndexType& e2P1,
|
|
IndexType& e2P2,
|
|
bool& flipE1,
|
|
bool& flipE2,
|
|
bool& flipE1E2 )
|
|
{
|
|
flipE1 = e1P1 > e1P2;
|
|
flipE2 = e2P1 > e2P2;
|
|
|
|
flipE1E2 = ( flipE1 ? e1P2 : e1P1 ) > ( flipE2 ? e2P2 : e2P1 );
|
|
|
|
static IndexType temp;
|
|
if ( flipE1 )
|
|
{
|
|
temp = e1P1;
|
|
e1P1 = e1P2;
|
|
e1P2 = temp;
|
|
}
|
|
|
|
if ( flipE2 )
|
|
{
|
|
temp = e2P1;
|
|
e2P1 = e2P2;
|
|
e2P2 = temp;
|
|
}
|
|
|
|
if ( flipE1E2 )
|
|
{
|
|
temp = e1P1;
|
|
e1P1 = e2P1;
|
|
e2P1 = temp;
|
|
|
|
temp = e1P2;
|
|
e1P2 = e2P2;
|
|
e2P2 = temp;
|
|
}
|
|
}
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename IndexType>
|
|
void EdgeIntersectStorage<IndexType>::addIntersection( IndexType e1P1,
|
|
IndexType e1P2,
|
|
IndexType e2P1,
|
|
IndexType e2P2,
|
|
IndexType vxIndexIntersectionPoint,
|
|
GeometryTools::IntersectionStatus intersectionStatus,
|
|
double fractionAlongEdge1,
|
|
double fractionAlongEdge2 )
|
|
{
|
|
static bool flipE1;
|
|
static bool flipE2;
|
|
static bool flipE1E2;
|
|
|
|
canonizeAddress( e1P1, e1P2, e2P1, e2P2, flipE1, flipE2, flipE1E2 );
|
|
|
|
static IntersectData iData;
|
|
|
|
iData.fractionAlongEdge1 = flipE1 ? 1 - fractionAlongEdge1 : fractionAlongEdge1;
|
|
iData.fractionAlongEdge2 = flipE2 ? 1 - fractionAlongEdge2 : fractionAlongEdge2;
|
|
iData.intersectionStatus = intersectionStatus;
|
|
|
|
if ( flipE1E2 )
|
|
{
|
|
double temp = iData.fractionAlongEdge1;
|
|
iData.fractionAlongEdge1 = iData.fractionAlongEdge2;
|
|
iData.fractionAlongEdge2 = temp;
|
|
}
|
|
|
|
iData.intersectionPointIndex = vxIndexIntersectionPoint;
|
|
CVF_ASSERT( e1P1 < m_edgeIntsectMap.size() );
|
|
m_edgeIntsectMap[e1P1][e1P2][e2P1][e2P2] = iData;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename IndexType>
|
|
bool EdgeIntersectStorage<IndexType>::findIntersection( IndexType e1P1,
|
|
IndexType e1P2,
|
|
IndexType e2P1,
|
|
IndexType e2P2,
|
|
IndexType* vxIndexIntersectionPoint,
|
|
GeometryTools::IntersectionStatus* intersectionStatus,
|
|
double* fractionAlongEdge1,
|
|
double* fractionAlongEdge2 )
|
|
{
|
|
static bool flipE1;
|
|
static bool flipE2;
|
|
static bool flipE1E2;
|
|
|
|
canonizeAddress( e1P1, e1P2, e2P1, e2P2, flipE1, flipE2, flipE1E2 );
|
|
|
|
if ( !m_edgeIntsectMap[e1P1].size() ) return false;
|
|
|
|
typename std::map<IndexType, std::map<IndexType, std::map<IndexType, IntersectData>>>::iterator it;
|
|
it = m_edgeIntsectMap[e1P1].find( e1P2 );
|
|
if ( it == m_edgeIntsectMap[e1P1].end() ) return false;
|
|
|
|
typename std::map<IndexType, std::map<IndexType, IntersectData>>::iterator it2;
|
|
it2 = it->second.find( e2P1 );
|
|
if ( it2 == it->second.end() ) return false;
|
|
|
|
typename std::map<IndexType, IntersectData>::iterator it3;
|
|
it3 = it2->second.find( e2P2 );
|
|
if ( it3 == it2->second.end() ) return false;
|
|
|
|
*vxIndexIntersectionPoint = it3->second.intersectionPointIndex;
|
|
*intersectionStatus = it3->second.intersectionStatus;
|
|
|
|
if ( flipE1E2 )
|
|
{
|
|
*fractionAlongEdge1 = it3->second.fractionAlongEdge2;
|
|
*fractionAlongEdge2 = it3->second.fractionAlongEdge1;
|
|
}
|
|
else
|
|
{
|
|
*fractionAlongEdge1 = it3->second.fractionAlongEdge1;
|
|
*fractionAlongEdge2 = it3->second.fractionAlongEdge2;
|
|
}
|
|
|
|
if ( flipE1 ) *fractionAlongEdge1 = 1 - *fractionAlongEdge1;
|
|
if ( flipE2 ) *fractionAlongEdge2 = 1 - *fractionAlongEdge2;
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace cvf
|