ResInsight/ApplicationLibCode/ReservoirDataModel/RigSimWellData.cpp
jonjenssen 4365b0dfb9
Grid import using opm-common improvements (#11438)
* Update opm-common EGRID reader to support LGRs, NNCs, dual porosity, unit system info and time step filters
* Rearrange well reading code into separate class
* Update resdata library to not require an ecl_grid when reading well information. Only lgr names are needed, allows reused by opm_common reader
2024-06-18 13:03:48 +02:00

348 lines
13 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigSimWellData.h"
#include "RigWellResultFrame.h"
#include "RigWellResultPoint.h"
#include <map>
#include <QDebug>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigSimWellData::RigSimWellData()
: m_isMultiSegmentWell( false )
{
m_staticWellCells = std::make_unique<RigWellResultFrame>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellResultFrame* RigSimWellData::wellResultFrame( size_t resultTimeStepIndex ) const
{
CVF_ASSERT( resultTimeStepIndex < m_resultTimeStepIndexToWellTimeStepIndex.size() );
size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex];
CVF_ASSERT( wellTimeStepIndex < m_wellCellsTimeSteps.size() );
return &( m_wellCellsTimeSteps[wellTimeStepIndex] );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::computeMappingFromResultTimeIndicesToWellTimeIndices( const std::vector<QDateTime>& simulationTimeSteps )
{
m_resultTimeStepIndexToWellTimeStepIndex.clear();
if ( m_wellCellsTimeSteps.empty() ) return;
m_resultTimeStepIndexToWellTimeStepIndex.resize( simulationTimeSteps.size(), cvf::UNDEFINED_SIZE_T );
size_t wellTimeStepIndex = 0;
for ( size_t resultTimeStepIndex = 0; resultTimeStepIndex < simulationTimeSteps.size(); resultTimeStepIndex++ )
{
while ( wellTimeStepIndex < m_wellCellsTimeSteps.size() &&
m_wellCellsTimeSteps[wellTimeStepIndex].timestamp() < simulationTimeSteps[resultTimeStepIndex] )
{
wellTimeStepIndex++;
}
if ( ( wellTimeStepIndex < m_wellCellsTimeSteps.size() ) &&
( m_wellCellsTimeSteps[wellTimeStepIndex].timestamp() == simulationTimeSteps[resultTimeStepIndex] ) )
{
m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex] = wellTimeStepIndex;
}
else
{
m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex] = cvf::UNDEFINED_SIZE_T;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::hasWellResult( size_t resultTimeStepIndex ) const
{
if ( resultTimeStepIndex >= m_resultTimeStepIndexToWellTimeStepIndex.size() )
{
return false;
}
size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex];
return wellTimeStepIndex != cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::hasAnyValidCells( size_t resultTimeStepIndex ) const
{
if ( resultTimeStepIndex >= m_resultTimeStepIndexToWellTimeStepIndex.size() )
{
return false;
}
size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex];
if ( wellTimeStepIndex == cvf::UNDEFINED_SIZE_T ) return false;
if ( wellResultFrame( resultTimeStepIndex )->wellHead().isCell() ) return true;
const std::vector<RigWellResultBranch> resBranches = wellResultFrame( resultTimeStepIndex )->wellResultBranches();
for ( const auto& branch : resBranches )
{
for ( const auto& branchResPoint : branch.branchResultPoints() )
{
if ( branchResPoint.isCell() ) return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool operator==( const RigWellResultPoint& p1, const RigWellResultPoint& p2 )
{
// TODO : Remove when <=> operator has been added to RigWellResultPoint
return p1.gridIndex() == p2.gridIndex() && p1.cellIndex() == p2.cellIndex() && p1.branchId() == p2.branchId() &&
p1.segmentId() == p2.segmentId();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::computeStaticWellCellPath() const
{
if ( m_wellCellsTimeSteps.empty() ) return;
// Mapping of Branch ERT ID to ResultPoint list
std::map<int, std::list<RigWellResultPoint>> staticWellBranches;
// Add ResultCell data from the first timestep to the final result.
for ( const auto& wellResultBranch : m_wellCellsTimeSteps[0].wellResultBranches() )
{
const int branchErtId = wellResultBranch.ertBranchId();
std::list<RigWellResultPoint>& branch = staticWellBranches[branchErtId];
for ( const auto& frameCell : wellResultBranch.branchResultPoints() )
{
branch.push_back( frameCell );
}
}
bool doSkipTimeStep = true;
for ( const auto& wellCellsTimeStep : m_wellCellsTimeSteps )
{
if ( doSkipTimeStep ) // Skip first
{
doSkipTimeStep = false;
continue;
}
// Merge well branches separately
for ( const auto& wellResultBranch : wellCellsTimeStep.wellResultBranches() )
{
const int branchId = wellResultBranch.ertBranchId();
const std::vector<RigWellResultPoint> resBranch = wellResultBranch.branchResultPoints();
std::list<RigWellResultPoint>& stBranch = staticWellBranches[branchId];
std::list<RigWellResultPoint>::iterator sEndIt;
size_t rStartIdx = -1;
size_t rEndIdx = -1;
// First detect if we have cells on the start of the result frame, that is not in the static frame
{
sEndIt = stBranch.begin();
bool found = false;
if ( !stBranch.empty() )
{
for ( rEndIdx = 0; !found && rEndIdx < resBranch.size(); ++rEndIdx )
{
if ( ( *sEndIt ) == ( resBranch[rEndIdx] ) )
{
found = true;
break;
}
}
}
if ( found )
{
if ( rEndIdx > 0 )
{
// Found cells in start, merge them in
for ( size_t cIdx = 0; cIdx < rEndIdx; ++cIdx )
{
stBranch.insert( sEndIt, resBranch[cIdx] );
}
}
}
else
{
// The result probably starts later in the well
rEndIdx = 0;
}
rStartIdx = rEndIdx;
}
// Now find all result cells in ranges between pairs in the static path
// If the result has items that "compete" with those in the static path,
// those items are inserted after the ones in the static path. This
// is not necessarily correct. They could be in front, and also merged in
// strange ways. A geometric test could make this more robust, but we will
// not solve before we see that it actually ends up as a problem
if ( sEndIt != stBranch.end() ) ++sEndIt;
for ( ; sEndIt != stBranch.end(); ++sEndIt )
{
bool found = false;
for ( rEndIdx += 1; !found && rEndIdx < resBranch.size(); ++rEndIdx )
{
if ( ( *sEndIt ) == ( resBranch[rEndIdx] ) )
{
found = true;
break;
}
}
if ( found )
{
if ( rEndIdx - rStartIdx > 1 )
{
// Found cell range in result that we do not have in the static result, merge them in
for ( size_t cIdx = rStartIdx + 1; cIdx < rEndIdx; ++cIdx )
{
stBranch.insert( sEndIt, resBranch[cIdx] );
}
}
}
else
{
// The static path probably has some extra cells
rEndIdx = rStartIdx;
}
rStartIdx = rEndIdx;
}
// Then add cells from the end of the resultpath not present in the static path
for ( size_t cIdx = rEndIdx + 1; cIdx < resBranch.size(); ++cIdx )
{
stBranch.push_back( resBranch[cIdx] );
}
}
}
// Populate the static well info
m_staticWellCells->clearWellResultBranches();
m_staticWellCells->setWellHead( m_wellCellsTimeSteps[0].wellHead() );
for ( const auto& [ertBranchId, resultPoints] : staticWellBranches )
{
// Copy from first time step
RigWellResultBranch rigBranch;
rigBranch.setErtBranchId( ertBranchId );
for ( const auto& resultPoint : resultPoints )
{
rigBranch.addBranchResultPoint( resultPoint );
}
m_staticWellCells->addWellResultBranch( rigBranch );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::setMultiSegmentWell( bool isMultiSegmentWell )
{
m_isMultiSegmentWell = isMultiSegmentWell;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::isMultiSegmentWell() const
{
return m_isMultiSegmentWell;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::setWellName( const QString& wellName )
{
m_wellName = wellName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RiaDefines::WellProductionType RigSimWellData::wellProductionType( size_t resultTimeStepIndex ) const
{
if ( hasWellResult( resultTimeStepIndex ) )
{
const RigWellResultFrame* wResFrame = wellResultFrame( resultTimeStepIndex );
return wResFrame->productionType();
}
else
{
return RiaDefines::WellProductionType::UNDEFINED_PRODUCTION_TYPE;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellResultFrame* RigSimWellData::staticWellResultFrame() const
{
// Make sure we have computed the static representation of the well
if ( m_staticWellCells->wellResultBranches().empty() )
{
computeStaticWellCellPath();
}
return m_staticWellCells.get();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::isOpen( size_t resultTimeStepIndex ) const
{
if ( hasWellResult( resultTimeStepIndex ) )
{
const RigWellResultFrame* wResFrame = wellResultFrame( resultTimeStepIndex );
return wResFrame->isOpen();
}
else
{
return false;
}
}