ResInsight/ApplicationLibCode/ReservoirDataModel/RigSurfaceResampler.cpp
Magne Sjaastad 10189da362
Fix display of intersection lines in 3D view
* 10675 Fix missing intersection line geometry
* Change to list of visible surface intersection lines
* Enable surface intersection band for any intersection
* Show labels for intersection curves in 3D

The polylines are defined in the display coordinate system without Z-scaling. The z-scaling is applied to the visualization parts using Part::setTransform(Transform* transform)
The annotation objects are defined by display coordinates, so apply the Z-scaling to the coordinates.

* Improve naming of surfaces
* Use scaling factor of 1.0 for flat intersection views
2023-10-03 09:04:46 +02:00

287 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2021- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigSurfaceResampler.h"
#include "RigWellPath.h"
#include "cvfGeometryTools.h"
#include "cvfBoundingBox.h"
#include "cvfObject.h"
#include <limits>
//--------------------------------------------------------------------------------------------------
/// Create a surface with same XY coordinates as targetSurface. Evaluate Z value at [X,Y] in the source surface. Search in XY plane to find
/// closest point, limited by a max distance from [X,Y].
//--------------------------------------------------------------------------------------------------
cvf::ref<RigSurface> RigSurfaceResampler::resampleSurface( cvf::ref<RigSurface> targetSurface, cvf::ref<RigSurface> surface )
{
cvf::ref<RigSurface> resampledSurface = cvf::make_ref<RigSurface>();
const std::vector<cvf::Vec3d>& targetVerts = targetSurface->vertices();
const std::vector<unsigned>& targetIndices = targetSurface->triangleIndices();
std::vector<cvf::Vec3d> resampledVerts;
for ( const auto& targetVert : targetVerts )
{
const cvf::Vec3d pointAbove = cvf::Vec3d( targetVert.x(), targetVert.y(), 10000.0 );
const cvf::Vec3d pointBelow = cvf::Vec3d( targetVert.x(), targetVert.y(), -10000.0 );
cvf::Vec3d intersectionPoint;
bool foundMatch = findClosestPointOnSurface( surface.p(), pointAbove, pointBelow, intersectionPoint );
if ( !foundMatch ) intersectionPoint = cvf::Vec3d( targetVert.x(), targetVert.y(), std::numeric_limits<double>::infinity() );
resampledVerts.push_back( intersectionPoint );
}
resampledSurface->setTriangleData( targetIndices, resampledVerts );
return resampledSurface;
}
//--------------------------------------------------------------------------------------------------
/// If an intersection point is found, return true and set intersectionPoint to the intersection point.
/// If no intersection point is found, return false.
//--------------------------------------------------------------------------------------------------
bool RigSurfaceResampler::computeIntersectionWithLine( RigSurface* surface, const cvf::Vec3d& p1, const cvf::Vec3d& p2, cvf::Vec3d& intersectionPoint )
{
if ( !surface ) return false;
surface->ensureIntersectionSearchTreeIsBuilt();
cvf::BoundingBox bb;
bb.add( p1 );
bb.add( p2 );
const std::vector<unsigned int>& triIndices = surface->triangleIndices();
const std::vector<cvf::Vec3d>& vertices = surface->vertices();
bool dummy = false;
std::vector<size_t> triangleStartIndices;
surface->findIntersectingTriangles( bb, &triangleStartIndices );
for ( auto startIndex : triangleStartIndices )
{
if ( cvf::GeometryTools::intersectLineSegmentTriangle( p1,
p2,
vertices[triIndices[startIndex + 0]],
vertices[triIndices[startIndex + 1]],
vertices[triIndices[startIndex + 2]],
&intersectionPoint,
&dummy ) == 1 )
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
/// Find the closest point on the surface to the line. The search is limited to a max distance from the line based on the resolution
/// of the surface.
//--------------------------------------------------------------------------------------------------
bool RigSurfaceResampler::findClosestPointOnSurface( RigSurface* surface, const cvf::Vec3d& p1, const cvf::Vec3d& p2, cvf::Vec3d& intersectionPoint )
{
if ( computeIntersectionWithLine( surface, p1, p2, intersectionPoint ) ) return true;
cvf::BoundingBox bb;
bb.add( p1 );
bb.add( p2 );
const std::vector<unsigned int>& triIndices = surface->triangleIndices();
const std::vector<cvf::Vec3d>& vertices = surface->vertices();
double maxDistance = computeMaxDistance( surface );
// Expand the bounding box to cover a larger volume around bounding box of the line segment.
bb.expand( maxDistance );
std::vector<size_t> triangleStartIndices;
surface->findIntersectingTriangles( bb, &triangleStartIndices );
return findClosestPointXY( p1, vertices, triIndices, triangleStartIndices, maxDistance, intersectionPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigSurfaceResampler::computeResampledPolyline( const std::vector<cvf::Vec3d>& polyline, double resamplingDistance )
{
auto polylineAndSegmentData = computeResampledPolylineWithSegmentInfoImpl( polyline, resamplingDistance );
return polylineAndSegmentData.first;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::pair<cvf::Vec3d, size_t>>
RigSurfaceResampler::computeResampledPolylineWithSegmentInfo( const std::vector<cvf::Vec3d>& polyline, double resamplingDistance )
{
// Segments along the original polyline must be provided to be able to find the associated transform matrix
std::vector<cvf::Vec3d> resampledPolyline;
std::vector<size_t> segmentIndices;
std::tie( resampledPolyline, segmentIndices ) = computeResampledPolylineWithSegmentInfoImpl( polyline, resamplingDistance );
if ( resampledPolyline.size() != segmentIndices.size() ) return {};
// Create vector of pairs based on pair of two vectors
std::vector<std::pair<cvf::Vec3d, size_t>> polyLineAndSegment;
for ( size_t i = 0; i < resampledPolyline.size(); i++ )
{
polyLineAndSegment.push_back( std::make_pair( resampledPolyline[i], segmentIndices[i] ) );
}
return polyLineAndSegment;
}
//--------------------------------------------------------------------------------------------------
/// Find the closest point in XY plane closer than maxDistance
//--------------------------------------------------------------------------------------------------
bool RigSurfaceResampler::findClosestPointXY( const cvf::Vec3d& targetPoint,
const std::vector<cvf::Vec3d>& vertices,
const std::vector<unsigned int>& triangleIndices,
const std::vector<size_t>& triangleStartIndices,
double maxDistance,
cvf::Vec3d& intersectionPoint )
{
double maxDistanceSquared = maxDistance * maxDistance;
// Find closest vertices
double shortestDistanceSquared = std::numeric_limits<double>::max();
double closestZ = std::numeric_limits<double>::infinity();
cvf::Vec3d p;
double distanceSquared = 0.0;
for ( auto triangleStartIndex : triangleStartIndices )
{
for ( size_t localIdx = 0; localIdx < 3; localIdx++ )
{
const auto& v = vertices[triangleIndices[triangleStartIndex + localIdx]];
if ( std::fabs( targetPoint.x() - v.x() ) > maxDistance ) continue;
if ( std::fabs( targetPoint.y() - v.y() ) > maxDistance ) continue;
// Ignore height (z) component when finding closest by
// moving point to same height as target point above
p.x() = v.x();
p.y() = v.y();
p.z() = targetPoint.z();
distanceSquared = p.pointDistanceSquared( targetPoint );
if ( distanceSquared < shortestDistanceSquared )
{
shortestDistanceSquared = distanceSquared;
closestZ = v.z();
}
}
}
// Check if the closest point is not to far away to be valid
if ( shortestDistanceSquared < maxDistanceSquared )
{
intersectionPoint = cvf::Vec3d( targetPoint.x(), targetPoint.y(), closestZ );
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigSurfaceResampler::computeMaxDistance( RigSurface* surface )
{
// Handle cases where no match is found due to floating point imprecision,
// or when falling off resulting grid slightly.
// Use the XY extent of a triangle to define a suitable search distance
const double minimumDistance = 10.0;
if ( !surface ) return minimumDistance;
auto maxX = surface->maxExtentTriangleInXDirection() / 2.0;
auto maxY = surface->maxExtentTriangleInYDirection() / 2.0;
auto candidate = std::min( maxX, maxY );
double distance = std::max( minimumDistance, candidate );
return distance;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<cvf::Vec3d>, std::vector<size_t>>
RigSurfaceResampler::computeResampledPolylineWithSegmentInfoImpl( const std::vector<cvf::Vec3d>& polyline, double resamplingDistance )
{
// Segments along the original polyline must be provided to be able to find the associated transform matrix
std::vector<cvf::Vec3d> resampledPolyline;
std::vector<size_t> segmentIndices;
if ( polyline.size() > 1 )
{
std::vector<double> measuredDepth;
{
double aggregatedLength = 0.0;
cvf::Vec3d previousPoint = polyline.front();
measuredDepth.push_back( aggregatedLength );
for ( size_t i = 1; i < polyline.size(); i++ )
{
aggregatedLength += ( previousPoint - polyline[i] ).length();
previousPoint = polyline[i];
measuredDepth.push_back( aggregatedLength );
}
}
// Use RigWellPath to perform the interpolation along a line based on measured depth
RigWellPath dummyWellPath( polyline, measuredDepth );
for ( size_t i = 1; i < polyline.size(); i++ )
{
const auto& lineSegmentStart = polyline[i - 1];
const auto& lineSegmentEnd = polyline[i];
auto startMD = measuredDepth[i - 1];
auto endMD = measuredDepth[i];
const size_t segmentIndex = i - 1;
resampledPolyline.emplace_back( lineSegmentStart );
segmentIndices.emplace_back( segmentIndex );
for ( auto md = startMD + resamplingDistance; md < endMD; md += resamplingDistance )
{
resampledPolyline.emplace_back( dummyWellPath.interpolatedPointAlongWellPath( md ) );
segmentIndices.emplace_back( segmentIndex );
}
resampledPolyline.emplace_back( lineSegmentEnd );
segmentIndices.emplace_back( segmentIndex );
}
}
return std::make_pair( resampledPolyline, segmentIndices );
}