ResInsight/ApplicationCode/ReservoirDataModel/RigFlowDiagInterfaceTools.h

154 lines
5.0 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#pragma once
#include "RigFlowDiagResultAddress.h"
#include <opm/flowdiagnostics/ConnectivityGraph.hpp>
#include <opm/flowdiagnostics/ConnectionValues.hpp>
#include <opm/flowdiagnostics/Toolbox.hpp>
#include <opm/utility/ECLFluxCalc.hpp>
#include <opm/utility/ECLGraph.hpp>
#include <opm/utility/ECLWellSolution.hpp>
#include <exception>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>
namespace RigFlowDiagInterfaceTools {
std::vector<Opm::ECLPhaseIndex> getPhases(RigFlowDiagResultAddress::PhaseSelection phaseSelection)
{
std::vector<Opm::ECLPhaseIndex> phases;
if (phaseSelection & RigFlowDiagResultAddress::PHASE_GAS)
{
phases.push_back(Opm::ECLPhaseIndex::Vapour);
}
if (phaseSelection & RigFlowDiagResultAddress::PHASE_OIL)
{
phases.push_back(Opm::ECLPhaseIndex::Liquid);
}
if (phaseSelection & RigFlowDiagResultAddress::PHASE_WAT)
{
phases.push_back(Opm::ECLPhaseIndex::Aqua);
}
return phases;
}
template <class FluxCalc>
inline Opm::FlowDiagnostics::ConnectionValues
extractFluxField(const Opm::ECLGraph& G,
FluxCalc&& getFlux,
std::vector<Opm::ECLPhaseIndex> actPh)
{
using ConnVals = Opm::FlowDiagnostics::ConnectionValues;
auto flux = ConnVals(ConnVals::NumConnections{ G.numConnections() },
ConnVals::NumPhases{ actPh.size() });
auto phas = ConnVals::PhaseID{ 0 };
for (const auto& p : actPh) {
const auto pflux = getFlux(p);
if (!pflux.empty()) {
assert(pflux.size() == flux.numConnections());
auto conn = ConnVals::ConnID{ 0 };
for (const auto& v : pflux) {
flux(conn, phas) = v;
conn.id += 1;
}
}
phas.id += 1;
}
return flux;
}
inline Opm::FlowDiagnostics::ConnectionValues
extractFluxFieldFromRestartFile(const Opm::ECLGraph& G,
const Opm::ECLRestartData& rstrt,
RigFlowDiagResultAddress::PhaseSelection phaseSelection)
{
auto getFlux = [&G, &rstrt]
(const Opm::ECLPhaseIndex p)
{
return G.flux(rstrt, p);
};
return extractFluxField(G, getFlux, getPhases(phaseSelection));
}
inline Opm::FlowDiagnostics::ConnectionValues
calculateFluxField(const Opm::ECLGraph& G,
const Opm::ECLInitFileData& init,
const Opm::ECLRestartData& rstrt,
RigFlowDiagResultAddress::PhaseSelection phaseSelection)
{
auto satfunc = Opm::ECLSaturationFunc(G, init);
Opm::ECLFluxCalc calc(G, init, 9.80665, true);
auto getFlux = [&calc, &rstrt]
(const Opm::ECLPhaseIndex p)
{
return calc.flux(rstrt, p);
};
return extractFluxField(G, getFlux, getPhases(phaseSelection));
}
template <class WellFluxes>
std::map<Opm::FlowDiagnostics::CellSetID, Opm::FlowDiagnostics::CellSetValues>
extractWellFlows(const Opm::ECLGraph& G,
const WellFluxes& well_fluxes)
{
std::map<Opm::FlowDiagnostics::CellSetID, Opm::FlowDiagnostics::CellSetValues> well_flows;
for (const auto& well : well_fluxes) {
Opm::FlowDiagnostics::CellSetValues& inflow = well_flows[Opm::FlowDiagnostics::CellSetID(well.name)];
for (const auto& completion : well.completions) {
const auto& gridName = completion.gridName;
const auto& ijk = completion.ijk;
const int cell_index = G.activeCell(ijk, gridName);
if (cell_index >= 0) {
// Since inflow is a std::map, if the key was not
// already present operator[] will insert a
// value-initialized value (as in T() for a type
// T), which is zero for built-in numerical types,
// including double.
inflow[cell_index] += completion.reservoir_inflow_rate;
}
}
}
return well_flows;
}
}