Files
ResInsight/ApplicationLibCode/ProjectDataModel/Summary/RimSummaryRegressionAnalysisCurve.cpp
Magne Sjaastad 4a3cdc4e94 Avoid use of time_t when using sliders in GUI
* Avoid use of time_t when using sliders in GUI
Sliders use int as internal representation of values, and time_t can cause overflow
2023-10-12 10:02:58 +02:00

909 lines
38 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2023 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimSummaryRegressionAnalysisCurve.h"
#include "RiaLogging.h"
#include "RiaQDateTimeTools.h"
#include "RiaRegressionTextTools.h"
#include "RiaTimeTTools.h"
#include "RimEnsembleCurveSet.h"
#include "RimEnsembleCurveSetCollection.h"
#include "RimSummaryCaseCollection.h"
#include "RimSummaryPlot.h"
#include "RimTimeAxisAnnotation.h"
#include "cafPdmUiDateEditor.h"
#include "cafPdmUiLineEditor.h"
#include "cafPdmUiSliderEditor.h"
#include "cafPdmUiSliderTools.h"
#include "cafPdmUiTextEditor.h"
#include "ExponentialRegression.hpp"
#include "LinearRegression.hpp"
#include "LogarithmicRegression.hpp"
#include "LogisticRegression.hpp"
#include "PolynomialRegression.hpp"
#include "PowerFitRegression.hpp"
#include <QDateTime>
#include <cmath>
#include <vector>
CAF_PDM_SOURCE_INIT( RimSummaryRegressionAnalysisCurve, "RegressionAnalysisCurve" );
namespace caf
{
template <>
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::RegressionType>::setUp()
{
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::LINEAR, "LINEAR", "Linear" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::POLYNOMIAL, "POLYNOMIAL", "Polynomial" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::POWER_FIT, "POWER_FIT", "Power Fit" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::EXPONENTIAL, "EXPONENTIAL", "Exponential" );
addItem( RimSummaryRegressionAnalysisCurve::RegressionType::LOGARITHMIC, "LOGARITHMIC", "Logarithmic" );
setDefault( RimSummaryRegressionAnalysisCurve::RegressionType::POLYNOMIAL );
}
template <>
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::ForecastUnit>::setUp()
{
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::DAYS, "DAYS", "Days" );
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::MONTHS, "MONTHS", "Months" );
addItem( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS, "YEARS", "Years" );
setDefault( RimSummaryRegressionAnalysisCurve::ForecastUnit::YEARS );
}
template <>
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::DataSource>::setUp()
{
addItem( RimSummaryRegressionAnalysisCurve::DataSource::SUMMARY_ADDRESS, "SUMMARY_ADDRESS", "Summary Address" );
addItem( RimSummaryRegressionAnalysisCurve::DataSource::ENSEMBLE, "ENSEMBLE", "Ensemble" );
setDefault( RimSummaryRegressionAnalysisCurve::DataSource::SUMMARY_ADDRESS );
}
template <>
void caf::AppEnum<RimSummaryRegressionAnalysisCurve::RangeType>::setUp()
{
addItem( RimSummaryRegressionAnalysisCurve::RangeType::FULL_RANGE, "FULL_RANGE", "Full Range" );
addItem( RimSummaryRegressionAnalysisCurve::RangeType::USER_DEFINED_RANGE, "USER_DEFINED_RANGE", "Custom Range" );
setDefault( RimSummaryRegressionAnalysisCurve::RangeType::FULL_RANGE );
}
}; // namespace caf
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimSummaryRegressionAnalysisCurve::RimSummaryRegressionAnalysisCurve()
{
CAF_PDM_InitObject( "Regression Analysis Curve", ":/regression-curve.svg" );
CAF_PDM_InitFieldNoDefault( &m_dataSourceForRegression, "DataSourceForRegression", "Data Source" );
CAF_PDM_InitFieldNoDefault( &m_ensembleCurveSet, "SourceCurveSet", "Source Curve Set" );
CAF_PDM_InitFieldNoDefault( &m_ensembleStatisticsType, "EnsembleStatisticsType", "Ensemble Statistics Type" );
CAF_PDM_InitFieldNoDefault( &m_regressionType, "RegressionType", "Type" );
CAF_PDM_InitField( &m_forecastForward, "ForecastForward", 0, "Forward" );
CAF_PDM_InitField( &m_forecastBackward, "ForecastBackward", 0, "Backward" );
CAF_PDM_InitFieldNoDefault( &m_forecastUnit, "ForecastUnit", "Unit" );
CAF_PDM_InitField( &m_polynomialDegree, "PolynomialDegree", 3, "Degree" );
CAF_PDM_InitFieldNoDefault( &m_timeRangeSelection, "TimeRangeSelection", "Time Range" );
CAF_PDM_InitFieldNoDefault( &m_minTimeSliderPosition, "MinTimeSliderPosition", "From" );
m_minTimeSliderPosition.uiCapability()->setUiEditorTypeName( caf::PdmUiSliderEditor::uiEditorTypeName() );
CAF_PDM_InitFieldNoDefault( &m_maxTimeSliderPosition, "MaxTimeSliderPosition", "To" );
m_maxTimeSliderPosition.uiCapability()->setUiEditorTypeName( caf::PdmUiSliderEditor::uiEditorTypeName() );
CAF_PDM_InitField( &m_showTimeSelectionInPlot, "ShowTimeSelectionInPlot", false, "Show In Plot" );
CAF_PDM_InitFieldNoDefault( &m_expressionText, "ExpressionText", "Expression" );
m_expressionText.uiCapability()->setUiEditorTypeName( caf::PdmUiTextEditor::uiEditorTypeName() );
m_expressionText.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN );
m_expressionText.uiCapability()->setUiReadOnly( true );
m_expressionText.xmlCapability()->disableIO();
CAF_PDM_InitFieldNoDefault( &m_xRangeSelection, "XRangeSelection", "X Value Range" );
CAF_PDM_InitField( &m_valueRangeX, "ValueRangeX", std::make_pair( 0.0, 0.0 ), "Value Range X" );
m_valueRangeX.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN );
CAF_PDM_InitFieldNoDefault( &m_yRangeSelection, "YRangeSelection", "Y Value Range" );
CAF_PDM_InitField( &m_valueRangeY, "ValueRangeY", std::make_pair( 0.0, 0.0 ), "Value Range Y" );
m_valueRangeY.uiCapability()->setUiLabelPosition( caf::PdmUiItemInfo::HIDDEN );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimSummaryRegressionAnalysisCurve::~RimSummaryRegressionAnalysisCurve()
{
auto plot = firstAncestorOrThisOfType<RimSummaryPlot>();
if ( plot && m_timeRangeAnnotation ) plot->removeTimeAnnotation( m_timeRangeAnnotation );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::setEnsembleCurveSet( RimEnsembleCurveSet* ensembleCurveSet )
{
m_dataSourceForRegression = DataSource::ENSEMBLE;
m_ensembleCurveSet = ensembleCurveSet;
m_ensembleStatisticsType = RifEclipseSummaryAddressDefines::StatisticsType::P10;
setSummaryAddressY( {} );
setSummaryAddressX( {} );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::onLoadDataAndUpdate( bool updateParentPlot )
{
extractSourceCurveData();
updateDefaultValues();
std::vector<double> xValues = m_sourceValuesX;
std::vector<double> yValues = m_sourceValuesY;
std::vector<time_t> timeStepsX = m_sourceTimeStepsX;
std::vector<time_t> timeStepsY = m_sourceTimeStepsY;
if ( yValues.empty() ) return;
if ( axisTypeX() == RiaDefines::HorizontalAxisType::SUMMARY_VECTOR )
{
if ( xValues.size() != yValues.size() ) return RiaLogging::error( "X value count and Y value count differs." );
if ( xValues.size() != timeStepsX.size() ) return RiaLogging::error( "X value count and X time step count differs." );
if ( xValues.size() != timeStepsY.size() ) return RiaLogging::error( "X value count and Y time step count differs." );
if ( timeStepsX != timeStepsY )
{
return RiaLogging::error(
"Differences in time steps for X and Y axis detected. This is currently not supported. Make sure that the same "
"case is used for both axis." );
}
}
std::vector<size_t> indicesToRemove;
if ( axisTypeX() == RiaDefines::HorizontalAxisType::SUMMARY_VECTOR )
{
for ( size_t i = 0; i < xValues.size(); i++ )
{
if ( xValues[i] < m_valueRangeX().first || xValues[i] > m_valueRangeX().second )
{
indicesToRemove.push_back( i );
}
}
}
for ( size_t i = 0; i < yValues.size(); i++ )
{
if ( yValues[i] < m_valueRangeY().first || yValues[i] > m_valueRangeY().second )
{
indicesToRemove.push_back( i );
}
}
// Sort indices in descending order
std::sort( indicesToRemove.rbegin(), indicesToRemove.rend() );
// There might be duplicates, remove them
indicesToRemove.erase( std::unique( indicesToRemove.begin(), indicesToRemove.end() ), indicesToRemove.end() );
// Remove elements at the specified indices
for ( auto index : indicesToRemove )
{
if ( index < yValues.size() )
{
yValues.erase( yValues.begin() + index );
timeStepsY.erase( timeStepsY.begin() + index );
}
if ( index < xValues.size() )
{
xValues.erase( xValues.begin() + index );
timeStepsX.erase( timeStepsX.begin() + index );
}
}
QString descriptionX;
std::tie( m_timeStepsX, m_valuesX, descriptionX ) = computeRegressionCurve( timeStepsX, xValues );
QString descriptionY;
std::tie( m_timeStepsY, m_valuesY, descriptionY ) = computeRegressionCurve( timeStepsY, yValues );
m_expressionText = descriptionY;
RimSummaryCurve::onLoadDataAndUpdate( updateParentPlot );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::extractSourceCurveData()
{
std::vector<double> xValues;
std::vector<double> yValues;
std::vector<time_t> xTimeSteps;
std::vector<time_t> yTimeSteps;
if ( m_dataSourceForRegression() == DataSource::ENSEMBLE )
{
auto findStatisticsCurve = []( RimEnsembleCurveSet* curveSet, const QString& statisticsCurveName ) -> RimSummaryCurve*
{
if ( curveSet == nullptr ) return nullptr;
auto allCurves = curveSet->curves();
for ( auto curve : allCurves )
{
auto yAddr = curve->summaryAddressY();
if ( yAddr.category() == RifEclipseSummaryAddressDefines::SummaryCategory::SUMMARY_ENSEMBLE_STATISTICS )
{
auto statisticsName = QString::fromStdString( yAddr.ensembleStatisticsVectorName() );
if ( statisticsName == statisticsCurveName )
{
return curve;
}
}
}
return nullptr;
};
auto curve = findStatisticsCurve( m_ensembleCurveSet(), m_ensembleStatisticsType().uiText() );
if ( curve )
{
yValues = curve->valuesY();
xValues = curve->valuesX();
auto curveTimeY = curve->timeStepsY();
if ( curveTimeY.size() == yValues.size() )
{
yTimeSteps = curveTimeY;
}
else
{
// Fallback to use time steps from summary case
// The time steps are used for reference, not used when computing the regression curve
auto summaryCase = m_ensembleCurveSet->summaryCaseCollection()->allSummaryCases().back();
auto allTimeSteps = summaryCase->summaryReader()->timeSteps( {} );
yTimeSteps = allTimeSteps;
yTimeSteps.resize( yValues.size() );
}
if ( xValues.size() == yValues.size() ) xTimeSteps = yTimeSteps;
}
}
else
{
// Get curve data from the summary data defined by X and Y axis data
xValues = RimSummaryCurve::valuesX();
yValues = RimSummaryCurve::valuesY();
xTimeSteps = RimSummaryCurve::timeStepsX();
yTimeSteps = RimSummaryCurve::timeStepsY();
}
m_sourceTimeStepsX = xTimeSteps;
m_sourceTimeStepsY = yTimeSteps;
m_sourceValuesX = xValues;
m_sourceValuesY = yValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimSummaryRegressionAnalysisCurve::valuesY() const
{
return m_valuesY;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimSummaryRegressionAnalysisCurve::valuesX() const
{
return m_valuesX;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::timeStepsY() const
{
return m_timeStepsY;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::timeStepsX() const
{
return m_timeStepsX;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::tuple<std::vector<time_t>, std::vector<double>, QString>
RimSummaryRegressionAnalysisCurve::computeRegressionCurve( const std::vector<time_t>& timeSteps, const std::vector<double>& values ) const
{
if ( values.empty() || timeSteps.empty() ) return { timeSteps, values, "" };
auto [minTimeStep, maxTimeStep] = selectedTimeStepRange();
auto [timeStepsInRange, valuesInRange] = getInRangeValues( timeSteps, values, minTimeStep, maxTimeStep );
if ( timeStepsInRange.empty() || valuesInRange.empty() ) return {};
const std::vector<double> timeStepsD = convertToDouble( timeStepsInRange );
// Create time steps which includes forecasting backward and forward
const std::vector<time_t> outputTimeSteps =
getOutputTimeSteps( timeStepsInRange, m_forecastBackward(), m_forecastForward(), m_forecastUnit() );
const std::vector<double> outputTimeStepsD = convertToDouble( outputTimeSteps );
// Move the time scale from seconds since epoch to years from first data point.
// This gives better precision for the regression analysis.
const double offset = timeStepsD[0];
auto convertToYearsFromFirstTimeStep = []( const std::vector<double>& timeSteps, double offset )
{
const double secondsPerYear = 60 * 60 * 24 * 365;
std::vector<double> timeStepsH( timeSteps.size() );
for ( size_t i = 0; i < timeSteps.size(); i++ )
{
timeStepsH[i] = ( timeSteps[i] - offset ) / secondsPerYear;
}
return timeStepsH;
};
const std::vector<double> timeStepsDYears = convertToYearsFromFirstTimeStep( timeStepsD, offset );
const std::vector<double> outputTimeStepsDYears = convertToYearsFromFirstTimeStep( outputTimeStepsD, offset );
if ( m_regressionType == RegressionType::LINEAR )
{
regression::LinearRegression linearRegression;
linearRegression.fit( timeStepsDYears, valuesInRange );
std::vector<double> predictedValues = linearRegression.predict( outputTimeStepsDYears );
return { outputTimeSteps, predictedValues, generateRegressionText( linearRegression ) };
}
else if ( m_regressionType == RegressionType::POLYNOMIAL )
{
regression::PolynomialRegression polynomialRegression;
polynomialRegression.fit( timeStepsDYears, valuesInRange, m_polynomialDegree );
std::vector<double> predictedValues = polynomialRegression.predict( outputTimeStepsDYears );
return { outputTimeSteps, predictedValues, generateRegressionText( polynomialRegression ) };
}
else if ( m_regressionType == RegressionType::POWER_FIT )
{
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsDYears, valuesInRange );
if ( filteredTimeSteps.empty() || filteredValues.empty() ) return {};
regression::PowerFitRegression powerFitRegression;
powerFitRegression.fit( filteredTimeSteps, filteredValues );
std::vector<double> predictedValues = powerFitRegression.predict( outputTimeStepsDYears );
return { outputTimeSteps, predictedValues, generateRegressionText( powerFitRegression ) };
}
else if ( m_regressionType == RegressionType::EXPONENTIAL )
{
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsDYears, valuesInRange );
if ( filteredTimeSteps.empty() || filteredValues.empty() ) return {};
regression::ExponentialRegression exponentialRegression;
exponentialRegression.fit( filteredTimeSteps, filteredValues );
std::vector<double> predictedValues = exponentialRegression.predict( outputTimeStepsDYears );
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( exponentialRegression ) };
}
else if ( m_regressionType == RegressionType::LOGARITHMIC )
{
auto [filteredTimeSteps, filteredValues] = getPositiveValues( timeStepsDYears, valuesInRange );
if ( filteredTimeSteps.empty() || filteredValues.empty() ) return {};
regression::LogarithmicRegression logarithmicRegression;
logarithmicRegression.fit( filteredTimeSteps, filteredValues );
std::vector<double> predictedValues = logarithmicRegression.predict( outputTimeStepsDYears );
return { convertToTimeT( outputTimeStepsD ), predictedValues, generateRegressionText( logarithmicRegression ) };
}
return { timeSteps, values, "" };
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
RimPlotCurve::updateFieldUiState();
uiOrdering.add( &m_dataSourceForRegression );
if ( m_dataSourceForRegression() == DataSource::ENSEMBLE )
{
uiOrdering.add( &m_ensembleCurveSet );
uiOrdering.add( &m_ensembleStatisticsType );
}
caf::PdmUiGroup* regressionCurveGroup = uiOrdering.addNewGroup( "Regression Analysis" );
regressionCurveGroup->add( &m_regressionType );
if ( m_regressionType == RegressionType::POLYNOMIAL )
{
regressionCurveGroup->add( &m_polynomialDegree );
}
regressionCurveGroup->add( &m_expressionText );
caf::PdmUiGroup* valueRangeYGroup = uiOrdering.addNewGroup( "Value Range Y" );
valueRangeYGroup->add( &m_yRangeSelection );
if ( m_yRangeSelection() == RangeType::USER_DEFINED_RANGE )
{
valueRangeYGroup->add( &m_valueRangeY );
}
if ( axisTypeX() == RiaDefines::HorizontalAxisType::SUMMARY_VECTOR )
{
caf::PdmUiGroup* valueRangeXGroup = uiOrdering.addNewGroup( "Value Range X" );
valueRangeXGroup->add( &m_xRangeSelection );
if ( m_xRangeSelection() == RangeType::USER_DEFINED_RANGE )
{
valueRangeXGroup->add( &m_valueRangeX );
}
}
else
{
caf::PdmUiGroup* timeSelectionGroup = uiOrdering.addNewGroup( "Time Selection" );
timeSelectionGroup->add( &m_timeRangeSelection );
if ( m_timeRangeSelection() == RangeType::USER_DEFINED_RANGE )
{
timeSelectionGroup->add( &m_minTimeSliderPosition );
timeSelectionGroup->add( &m_maxTimeSliderPosition );
}
timeSelectionGroup->add( &m_showTimeSelectionInPlot );
}
caf::PdmUiGroup* forecastingGroup = uiOrdering.addNewGroup( "Forecasting" );
forecastingGroup->add( &m_forecastForward );
forecastingGroup->add( &m_forecastBackward );
forecastingGroup->add( &m_forecastUnit );
if ( m_dataSourceForRegression() == DataSource::ENSEMBLE )
{
caf::PdmUiGroup* appearanceGroup = uiOrdering.addNewGroup( "Appearance" );
RimPlotCurve::appearanceUiOrdering( *appearanceGroup );
caf::PdmUiGroup* nameGroup = uiOrdering.addNewGroup( "Curve Name" );
nameGroup->setCollapsedByDefault();
nameGroup->add( &m_showLegend );
RimPlotCurve::curveNameUiOrdering( *nameGroup );
}
else
{
RimSummaryCurve::defineUiOrdering( uiConfigName, uiOrdering );
}
uiOrdering.skipRemainingFields();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::fieldChangedByUi( const caf::PdmFieldHandle* changedField,
const QVariant& oldValue,
const QVariant& newValue )
{
RimSummaryCurve::fieldChangedByUi( changedField, oldValue, newValue );
if ( &m_minTimeSliderPosition == changedField && m_minTimeSliderPosition > m_maxTimeSliderPosition )
{
m_maxTimeSliderPosition = m_minTimeSliderPosition;
}
if ( &m_maxTimeSliderPosition == changedField && m_maxTimeSliderPosition < m_minTimeSliderPosition )
{
m_minTimeSliderPosition = m_maxTimeSliderPosition;
}
loadAndUpdateDataAndPlot();
auto plot = firstAncestorOrThisOfTypeAsserted<RimSummaryPlot>();
if ( plot ) plot->zoomAll();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::defineEditorAttribute( const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute )
{
RimSummaryCurve::defineEditorAttribute( field, uiConfigName, attribute );
if ( field == &m_polynomialDegree )
{
if ( auto* lineEditorAttr = dynamic_cast<caf::PdmUiLineEditorAttribute*>( attribute ) )
{
// Polynomial degree should be a positive number.
lineEditorAttr->validator = new QIntValidator( 1, 50, nullptr );
}
}
else if ( field == &m_forecastForward || field == &m_forecastBackward )
{
if ( auto* lineEditorAttr = dynamic_cast<caf::PdmUiLineEditorAttribute*>( attribute ) )
{
// Block negative forecast
lineEditorAttr->validator = new QIntValidator( 0, 50, nullptr );
}
}
else if ( field == &m_minTimeSliderPosition || field == &m_maxTimeSliderPosition )
{
if ( auto* myAttr = dynamic_cast<caf::PdmUiSliderEditorAttribute*>( attribute ) )
{
myAttr->m_minimum = 0;
myAttr->m_maximum = 100;
myAttr->m_showSpinBox = false;
}
}
else if ( field == &m_expressionText )
{
auto myAttr = dynamic_cast<caf::PdmUiTextEditorAttribute*>( attribute );
if ( myAttr )
{
myAttr->wrapMode = caf::PdmUiTextEditorAttribute::NoWrap;
myAttr->textMode = caf::PdmUiTextEditorAttribute::HTML;
QFont font;
auto pointSize = font.pointSize();
font.setPointSize( pointSize + 2 );
myAttr->font = font;
}
}
else if ( field == &m_valueRangeX )
{
if ( auto attr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>( attribute ) )
{
attr->m_decimals = 2;
attr->m_sliderTickCount = 100;
auto values = m_sourceValuesX;
if ( !values.empty() )
{
attr->m_minimum = *std::min_element( values.begin(), values.end() );
attr->m_maximum = *std::max_element( values.begin(), values.end() );
}
}
}
else if ( field == &m_valueRangeY )
{
if ( auto attr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>( attribute ) )
{
attr->m_decimals = 2;
attr->m_sliderTickCount = 100;
auto values = m_sourceValuesY;
if ( !values.empty() )
{
attr->m_minimum = *std::min_element( values.begin(), values.end() );
attr->m_maximum = *std::max_element( values.begin(), values.end() );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo> RimSummaryRegressionAnalysisCurve::calculateValueOptions( const caf::PdmFieldHandle* fieldNeedingOptions )
{
if ( fieldNeedingOptions == &m_ensembleCurveSet )
{
QList<caf::PdmOptionItemInfo> options;
options.append( { "None", nullptr } );
auto plot = firstAncestorOrThisOfType<RimSummaryPlot>();
if ( plot )
{
auto curveSets = plot->ensembleCurveSetCollection()->curveSets();
for ( auto curveSet : curveSets )
{
options.append( { curveSet->name(), curveSet } );
}
}
return options;
}
return RimSummaryCurve::calculateValueOptions( fieldNeedingOptions );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::createCurveAutoName()
{
QString sourceCurveName;
if ( m_dataSourceForRegression() == DataSource::ENSEMBLE )
{
if ( m_ensembleCurveSet() )
{
sourceCurveName = m_ensembleCurveSet()->name();
}
}
else
{
sourceCurveName = RimSummaryCurve::createCurveAutoName();
}
return sourceCurveName + " " + m_regressionType().uiText() + " Regression";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::curveExportDescription( const RifEclipseSummaryAddress& address ) const
{
return RimSummaryCurve::curveExportDescription( {} ) + "." + m_regressionType().uiText() + "_Regression";
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::LinearRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::PolynomialRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::PowerFitRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::ExponentialRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::generateRegressionText( const regression::LogarithmicRegression& reg )
{
return RiaRegressionTextTools::generateRegressionText( reg ) + getXAxisUnitText();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::appendTimeSteps( std::vector<time_t>& destinationTimeSteps, const std::set<QDateTime>& sourceTimeSteps )
{
for ( const QDateTime& t : sourceTimeSteps )
destinationTimeSteps.push_back( RiaTimeTTools::fromQDateTime( t ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<time_t, time_t> RimSummaryRegressionAnalysisCurve::fullTimeStepRange() const
{
auto timeSteps = RimSummaryCurve::timeStepsY();
if ( !timeSteps.empty() )
{
return std::make_pair( *timeSteps.begin(), *timeSteps.rbegin() );
}
return {};
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<time_t, time_t> RimSummaryRegressionAnalysisCurve::selectedTimeStepRange() const
{
// Scale the slider values to the full time step range
auto [min, max] = fullTimeStepRange();
auto range = max - min;
auto selectedMin = min + static_cast<time_t>( range * ( m_minTimeSliderPosition / 100.0 ) );
auto selectedMax = min + static_cast<time_t>( range * ( m_maxTimeSliderPosition / 100.0 ) );
return { selectedMin, selectedMax };
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::getOutputTimeSteps( const std::vector<time_t>& timeSteps,
int forecastBackward,
int forecastForward,
ForecastUnit forecastUnit )
{
auto getTimeSpan = []( int value, ForecastUnit unit )
{
if ( unit == ForecastUnit::YEARS ) return DateTimeSpan( value, 0, 0 );
if ( unit == ForecastUnit::MONTHS ) return DateTimeSpan( 0, value, 0 );
CAF_ASSERT( unit == ForecastUnit::DAYS );
return DateTimeSpan( 0, 0, value );
};
int numDates = 50;
std::vector<time_t> outputTimeSteps;
if ( forecastBackward > 0 )
{
QDateTime firstTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.front() );
QDateTime forecastStartTimeStep = RiaQDateTimeTools::subtractSpan( firstTimeStepInData, getTimeSpan( forecastBackward, forecastUnit ) );
auto forecastTimeSteps =
RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( forecastStartTimeStep, firstTimeStepInData, numDates );
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
}
outputTimeSteps.insert( std::end( outputTimeSteps ), std::begin( timeSteps ), std::end( timeSteps ) );
if ( forecastForward > 0 )
{
QDateTime lastTimeStepInData = RiaQDateTimeTools::fromTime_t( timeSteps.back() );
QDateTime forecastEndTimeStep = RiaQDateTimeTools::addSpan( lastTimeStepInData, getTimeSpan( forecastForward, forecastUnit ) );
auto forecastTimeSteps = RiaQDateTimeTools::createEvenlyDistributedDatesInInterval( lastTimeStepInData, forecastEndTimeStep, numDates );
appendTimeSteps( outputTimeSteps, forecastTimeSteps );
}
return outputTimeSteps;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimSummaryRegressionAnalysisCurve::isRegressionCurve() const
{
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimSummaryRegressionAnalysisCurve::convertToDouble( const std::vector<time_t>& timeSteps )
{
std::vector<double> doubleVector( timeSteps.size() );
std::transform( timeSteps.begin(),
timeSteps.end(),
doubleVector.begin(),
[]( const auto& timeVal ) { return static_cast<double>( timeVal ); } );
return doubleVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<time_t> RimSummaryRegressionAnalysisCurve::convertToTimeT( const std::vector<double>& timeSteps )
{
std::vector<time_t> tVector( timeSteps.size() );
std::transform( timeSteps.begin(), timeSteps.end(), tVector.begin(), []( const auto& timeVal ) { return static_cast<time_t>( timeVal ); } );
return tVector;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<double>, std::vector<double>>
RimSummaryRegressionAnalysisCurve::getPositiveValues( const std::vector<double>& timeSteps, const std::vector<double>& values )
{
std::vector<double> filteredTimeSteps;
std::vector<double> filteredValues;
for ( size_t i = 0; i < timeSteps.size(); i++ )
{
if ( timeSteps[i] > 0.0 && values[i] > 0.0 )
{
filteredTimeSteps.push_back( timeSteps[i] );
filteredValues.push_back( values[i] );
}
}
return std::make_pair( filteredTimeSteps, filteredValues );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<time_t>, std::vector<double>> RimSummaryRegressionAnalysisCurve::getInRangeValues( const std::vector<time_t>& timeSteps,
const std::vector<double>& values,
time_t minTimeStep,
time_t maxTimeStep )
{
CAF_ASSERT( timeSteps.size() == values.size() );
std::vector<time_t> filteredTimeSteps;
std::vector<double> filteredValues;
for ( size_t i = 0; i < timeSteps.size(); i++ )
{
time_t timeStep = timeSteps[i];
if ( timeStep >= minTimeStep && timeStep <= maxTimeStep )
{
filteredTimeSteps.push_back( timeStep );
filteredValues.push_back( values[i] );
}
}
return std::make_pair( filteredTimeSteps, filteredValues );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::updateTimeAnnotations()
{
auto plot = firstAncestorOrThisOfTypeAsserted<RimSummaryPlot>();
if ( m_timeRangeAnnotation ) plot->removeTimeAnnotation( m_timeRangeAnnotation );
if ( m_showTimeSelectionInPlot && isChecked() )
{
auto [minTimeStep, maxTimeStep] = selectedTimeStepRange();
m_timeRangeAnnotation = plot->addTimeRangeAnnotation( minTimeStep, maxTimeStep );
m_timeRangeAnnotation->setColor( color() );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimSummaryRegressionAnalysisCurve::updateDefaultValues()
{
if ( !m_sourceTimeStepsY.empty() && m_timeRangeSelection() == RangeType::FULL_RANGE )
{
m_minTimeSliderPosition = 0;
m_maxTimeSliderPosition = 100;
}
if ( !m_sourceValuesX.empty() && m_xRangeSelection() == RangeType::FULL_RANGE )
{
m_valueRangeX = std::make_pair( *std::min_element( m_sourceValuesX.begin(), m_sourceValuesX.end() ),
*std::max_element( m_sourceValuesX.begin(), m_sourceValuesX.end() ) );
}
if ( !m_sourceValuesY.empty() && m_yRangeSelection() == RangeType::FULL_RANGE )
{
m_valueRangeY = std::make_pair( *std::min_element( m_sourceValuesY.begin(), m_sourceValuesY.end() ),
*std::max_element( m_sourceValuesY.begin(), m_sourceValuesY.end() ) );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimSummaryRegressionAnalysisCurve::getXAxisUnitText()
{
return QString( "<br>X Axis Unit: Year" );
}