ResInsight/ThirdParty/custom-opm-flowdiagnostics/opm-flowdiagnostics/opm/flowdiagnostics/DerivedQuantities.cpp
Jacob Støren 4e091641a4 #1483 Update opm-flowdiagnostics and ..-applications
to b6e59ddcd2fe, and ccaaa4dd1b55 respectively.

In order to include flowCapacityStorageCapacityCurve with max pv fraction threshold
2017-05-29 13:08:32 +02:00

285 lines
11 KiB
C++

/*
Copyright 2015, 2016, 2017 SINTEF ICT, Applied Mathematics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include <config.h>
#endif // HAVE_CONFIG_H
#include <opm/flowdiagnostics/DerivedQuantities.hpp>
#include <algorithm>
#include <numeric>
namespace Opm
{
namespace FlowDiagnostics
{
namespace {
/// Helper function for flowCapacityStorageCapacityCurve().
template <class InputValues, class ExtractElement>
std::vector<double>
cumulativeNormalized(const InputValues& input,
ExtractElement&& extract)
{
// Extract quantity.
auto q = std::vector<double>{};
q.reserve(input.size() + 1);
q.push_back(0.0);
for (const auto& e : input) {
q.push_back(extract(e));
}
// Accumulate and normalize.
std::partial_sum(q.begin(), q.end(), q.begin());
const auto t = q.back();
for (auto& qi : q) {
qi /= t;
}
return q;
}
} // anonymous namespace
/// The F-Phi curve.
///
/// The F-Phi curve is an analogue to the fractional flow
/// curve in a 1D displacement. It can be used to compute
/// other interesting diagnostic quantities such as the Lorenz
/// coefficient. For a technical description see Shavali et
/// al. (SPE 146446), Shook and Mitchell (SPE 124625).
Graph flowCapacityStorageCapacityCurve(const Toolbox::Forward& injector_solution,
const Toolbox::Reverse& producer_solution,
const std::vector<double>& pv,
const double max_pv_fraction)
{
return flowCapacityStorageCapacityCurve(injector_solution.fd.timeOfFlight(),
producer_solution.fd.timeOfFlight(),
pv,
max_pv_fraction);
}
/// The F-Phi curve.
///
/// The F-Phi curve is an analogue to the fractional flow
/// curve in a 1D displacement. It can be used to compute
/// other interesting diagnostic quantities such as the Lorenz
/// coefficient. For a technical description see Shavali et
/// al. (SPE 146446), Shook and Mitchell (SPE 124625).
Graph flowCapacityStorageCapacityCurve(const std::vector<double>& injector_tof,
const std::vector<double>& producer_tof,
const std::vector<double>& pv,
const double max_pv_fraction)
{
if (pv.size() != injector_tof.size() || pv.size() != producer_tof.size()) {
throw std::runtime_error("flowCapacityStorageCapacityCurve(): "
"Input solutions must have same size.");
}
// Compute max pv cutoff.
const double total_pv = std::accumulate(pv.begin(), pv.end(), 0.0);
const double max_pv = max_pv_fraction * total_pv;
// Sort according to total travel time.
const int n = pv.size();
typedef std::pair<double, double> D2;
std::vector<D2> time_and_pv(n);
for (int ii = 0; ii < n; ++ii) {
if (pv[ii] > max_pv) {
time_and_pv[ii].first = 1e100;
time_and_pv[ii].second = 0.0;
} else {
time_and_pv[ii].first = injector_tof[ii] + producer_tof[ii]; // Total travel time.
time_and_pv[ii].second = pv[ii];
}
}
std::sort(time_and_pv.begin(), time_and_pv.end());
auto Phi = cumulativeNormalized(time_and_pv, [](const D2& i) { return i.second; });
auto F = cumulativeNormalized(time_and_pv, [](const D2& i) { return i.second / i.first; });
return Graph{std::move(Phi), std::move(F)};
}
/// The Lorenz coefficient from the F-Phi curve.
///
/// The Lorenz coefficient is a measure of heterogeneity. It
/// is equal to twice the area between the F-Phi curve and the
/// F = Phi line. The coefficient can vary from zero to
/// one. If the coefficient is zero (so the F-Phi curve is a
/// straight line) we have perfect piston-like displacement
/// while a coefficient of one indicates infinitely
/// heterogenous displacement (essentially no sweep).
///
/// Note: The coefficient is analogous to the Gini coefficient
/// of economic theory, where the name Lorenz curve is applied
/// to what we call the F-Phi curve.
double lorenzCoefficient(const Graph& flowcap_storagecap_curve)
{
const auto& storagecap = flowcap_storagecap_curve.first;
const auto& flowcap = flowcap_storagecap_curve.second;
if (flowcap.size() != storagecap.size()) {
throw std::runtime_error("lorenzCoefficient(): Inconsistent sizes in input graph.");
}
double integral = 0.0;
// Trapezoid quadrature of the curve F(Phi).
const int num_intervals = flowcap.size() - 1;
for (int ii = 0; ii < num_intervals; ++ii) {
const double len = storagecap[ii+1] - storagecap[ii];
integral += (flowcap[ii] + flowcap[ii+1]) * len / 2.0;
}
return 2.0 * (integral - 0.5);
}
/// Compute sweep efficiency versus dimensionless time (pore
/// volumes injected).
///
/// The sweep efficiency is analogue to 1D displacement using
/// the F-Phi curve as flux function.
Graph sweepEfficiency(const Graph& flowcap_storagecap_curve)
{
const auto& storagecap = flowcap_storagecap_curve.first;
const auto& flowcap = flowcap_storagecap_curve.second;
if (flowcap.size() != storagecap.size()) {
throw std::runtime_error("sweepEfficiency(): Inconsistent sizes in input graph.");
}
// Compute tD and Ev simultaneously,
// skipping identical Phi data points.
const int n = flowcap.size();
std::vector<double> Ev;
std::vector<double> tD;
tD.reserve(n);
Ev.reserve(n);
tD.push_back(0.0);
Ev.push_back(0.0);
for (int ii = 1; ii < n; ++ii) { // Note loop limits.
const double fd = flowcap[ii] - flowcap[ii-1];
const double sd = storagecap[ii] - storagecap[ii-1];
if (fd != 0.0) {
tD.push_back(sd/fd);
Ev.push_back(storagecap[ii] + (1.0 - flowcap[ii]) * tD.back());
}
}
return std::make_pair(tD, Ev);
}
/// Compute pore volume associated with an injector-producer pair.
double injectorProducerPairVolume(const Toolbox::Forward& injector_solution,
const Toolbox::Reverse& producer_solution,
const std::vector<double>& pore_volume,
const CellSetID& injector,
const CellSetID& producer)
{
const auto& inj_tracer = injector_solution.fd.concentration(injector);
const auto& prod_tracer = producer_solution.fd.concentration(producer);
double volume = 0.0;
for (const auto& inj_data : inj_tracer) {
const int cell = inj_data.first;
const auto prod_data = prod_tracer.find(cell);
if (prod_data != prod_tracer.end()) {
volume += pore_volume[cell] * inj_data.second * prod_data->second;
}
}
return volume;
}
namespace {
// Helper for injectorProducerPairFlux().
double pairFlux(const CellSetValues& tracer,
const CellSet& well_cells,
const CellSetValues& inflow_flux,
const bool require_inflow)
{
double flux = 0.0;
for (const int cell : well_cells) {
const auto tracer_iter = tracer.find(cell);
if (tracer_iter != tracer.end()) {
// Tracer present in cell.
const auto source_iter = inflow_flux.find(cell);
if (source_iter != inflow_flux.end()) {
// Cell has source term.
const double source = source_iter->second;
if ((source > 0.0) == require_inflow) {
// Source term has correct sign.
flux += source * tracer_iter->second;
}
}
}
}
return flux;
}
} // anonymous namespace
/// Compute fluxes associated with an injector-producer pair.
///
/// The first flux returned is the injection flux associated with the given producers,
/// (equal to the accumulated product of producer tracer values at the injector cells
/// with the injection fluxes), the second is the production flux associated with the
/// given injectors. In general, they will only be the same (up to sign) for
/// incompressible cases.
///
/// Note: since we consider injecting fluxes positive and producing fluxes negative
/// (for the inflow_flux), the first returned element will be positive and the second
/// will be negative.
std::pair<double, double>
injectorProducerPairFlux(const Toolbox::Forward& injector_solution,
const Toolbox::Reverse& producer_solution,
const CellSet& injector_cells,
const CellSet& producer_cells,
const CellSetValues& inflow_flux)
{
const auto& inj_tracer = injector_solution.fd.concentration(injector_cells.id());
const auto& prod_tracer = producer_solution.fd.concentration(producer_cells.id());
const double inj_flux = pairFlux(prod_tracer, injector_cells, inflow_flux, true);
const double prod_flux = pairFlux(inj_tracer, producer_cells, inflow_flux, false);
return { inj_flux, prod_flux };
}
} // namespace FlowDiagnostics
} // namespace Opm