mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-07 14:43:10 -06:00
82 lines
3.2 KiB
C++
82 lines
3.2 KiB
C++
/*
|
|
**************************************************************
|
|
* C++ Mathematical Expression Toolkit Library *
|
|
* *
|
|
* Simple Example 16 *
|
|
* Author: Arash Partow (1999-2017) *
|
|
* URL: http://www.partow.net/programming/exprtk/index.html *
|
|
* *
|
|
* Copyright notice: *
|
|
* Free use of the Mathematical Expression Toolkit Library is *
|
|
* permitted under the guidelines and in accordance with the *
|
|
* most current version of the MIT License. *
|
|
* http://www.opensource.org/licenses/MIT *
|
|
* *
|
|
**************************************************************
|
|
*/
|
|
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <string>
|
|
#include "exprtk.hpp"
|
|
|
|
|
|
template <typename T>
|
|
void linear_least_squares()
|
|
{
|
|
typedef exprtk::symbol_table<T> symbol_table_t;
|
|
typedef exprtk::expression<T> expression_t;
|
|
typedef exprtk::parser<T> parser_t;
|
|
|
|
std::string linear_least_squares_program =
|
|
" if (x[] == y[]) "
|
|
" { "
|
|
" beta := (sum(x * y) - sum(x) * sum(y) / x[]) / "
|
|
" (sum(x^2) - sum(x)^2 / x[]); "
|
|
" "
|
|
" alpha := avg(y) - beta * avg(x); "
|
|
" "
|
|
" rmse := sqrt(sum((beta * x + alpha - y)^2) / y[]); "
|
|
" } "
|
|
" else "
|
|
" { "
|
|
" alpha := null; "
|
|
" beta := null; "
|
|
" rmse := null; "
|
|
" } ";
|
|
|
|
T x[] = {T( 1), T( 2), T(3), T( 4), T( 5), T(6), T( 7), T( 8), T( 9), T(10)};
|
|
T y[] = {T(8.7), T(6.8), T(6), T(5.6), T(3.8), T(3), T(2.4), T(1.7), T(0.4), T(-1)};
|
|
|
|
T alpha = T(0);
|
|
T beta = T(0);
|
|
T rmse = T(0);
|
|
|
|
symbol_table_t symbol_table;
|
|
symbol_table.add_variable("alpha",alpha);
|
|
symbol_table.add_variable("beta" ,beta );
|
|
symbol_table.add_variable("rmse" ,rmse );
|
|
symbol_table.add_vector ("x" ,x );
|
|
symbol_table.add_vector ("y" ,y );
|
|
|
|
expression_t expression;
|
|
expression.register_symbol_table(symbol_table);
|
|
|
|
parser_t parser;
|
|
parser.compile(linear_least_squares_program,expression);
|
|
|
|
expression.value();
|
|
|
|
printf("alpha: %15.12f\n",alpha);
|
|
printf("beta: %15.12f\n",beta );
|
|
printf("rmse: %15.12f\n",rmse );
|
|
printf("y = %15.12fx + %15.12f\n",beta,alpha);
|
|
}
|
|
|
|
int main()
|
|
{
|
|
linear_least_squares<double>();
|
|
return 0;
|
|
}
|