mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-08 23:23:01 -06:00
431 lines
21 KiB
C++
431 lines
21 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2017- Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigNumberOfFloodedPoreVolumesCalculator.h"
|
|
|
|
#include "RiaPorosityModel.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigEclipseCaseData.h"
|
|
#include "RigEclipseResultAddress.h"
|
|
#include "RigMainGrid.h"
|
|
#include "RigNNCData.h"
|
|
#include "RigReservoirBuilderMock.h"
|
|
|
|
#include "RimEclipseCase.h"
|
|
#include "RimReservoirCellResultsStorage.h"
|
|
|
|
#include "cafProgressInfo.h"
|
|
#include <QString>
|
|
#include <vector>
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator( RimEclipseCase* caseToApply,
|
|
const std::vector<QString>& tracerNames )
|
|
{
|
|
RigMainGrid* mainGrid = caseToApply->eclipseCaseData()->mainGrid();
|
|
|
|
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
|
|
RigCaseCellResultsData* gridCellResults = caseToApply->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
size_t resultCellCount = actCellInfo->reservoirActiveCellCount();
|
|
|
|
size_t timeStepCount = caseToApply->eclipseCaseData()->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->maxTimeStepCount();
|
|
size_t totalProgress = tracerNames.size() + 8 + timeStepCount + 2 * timeStepCount;
|
|
caf::ProgressInfo progress( totalProgress, "Calculating number of flooded mobile pore volumes." );
|
|
progress.setProgressDescription( "Loading required results" );
|
|
// PORV
|
|
const std::vector<double>* porvResults = nullptr;
|
|
std::vector<double> porvActiveCellsResultStorage;
|
|
porvResults = RigCaseCellResultsData::getResultIndexableStaticResult( actCellInfo, gridCellResults, "PORV", porvActiveCellsResultStorage );
|
|
|
|
progress.incrementProgress();
|
|
|
|
// SWCR if defined
|
|
|
|
const std::vector<double>* swcrResults = nullptr;
|
|
swcrResults = RigCaseCellResultsData::getResultIndexableStaticResult( actCellInfo, gridCellResults, "SWCR", porvActiveCellsResultStorage );
|
|
progress.incrementProgress();
|
|
|
|
std::vector<RigEclipseResultAddress> tracerResAddrs;
|
|
for ( QString tracerName : tracerNames )
|
|
{
|
|
RigEclipseResultAddress tracerResAddr( RiaDefines::ResultCatType::DYNAMIC_NATIVE, tracerName );
|
|
if ( gridCellResults->ensureKnownResultLoaded( tracerResAddr ) )
|
|
{
|
|
tracerResAddrs.push_back( tracerResAddr );
|
|
}
|
|
progress.incrementProgress();
|
|
}
|
|
std::vector<std::vector<double>> summedTracersAtAllTimesteps;
|
|
|
|
// TODO: Option for Oil and Gas instead of water
|
|
RigEclipseResultAddress flrWatIAddr( RiaDefines::ResultCatType::DYNAMIC_NATIVE, "FLRWATI+" );
|
|
RigEclipseResultAddress flrWatJAddr( RiaDefines::ResultCatType::DYNAMIC_NATIVE, "FLRWATJ+" );
|
|
RigEclipseResultAddress flrWatKAddr( RiaDefines::ResultCatType::DYNAMIC_NATIVE, "FLRWATK+" );
|
|
|
|
bool hasFlowrateI = gridCellResults->ensureKnownResultLoaded( flrWatIAddr );
|
|
progress.incrementProgress();
|
|
bool hasFlowrateJ = gridCellResults->ensureKnownResultLoaded( flrWatJAddr );
|
|
progress.incrementProgress();
|
|
bool hasFlowrateK = gridCellResults->ensureKnownResultLoaded( flrWatKAddr );
|
|
progress.incrementProgress();
|
|
|
|
std::vector<const std::vector<double>*> flowrateIatAllTimeSteps;
|
|
std::vector<const std::vector<double>*> flowrateJatAllTimeSteps;
|
|
std::vector<const std::vector<double>*> flowrateKatAllTimeSteps;
|
|
|
|
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
|
|
const RigConnectionContainer connections = nncData->allConnections();
|
|
|
|
progress.incrementProgress();
|
|
|
|
// TODO: oil or gas flow rate
|
|
std::vector<const std::vector<double>*> flowrateNNCatAllTimeSteps;
|
|
QString nncConnectionProperty = RiaDefines::propertyNameFluxWat();
|
|
|
|
progress.incrementProgress();
|
|
|
|
std::vector<double> daysSinceSimulationStart =
|
|
caseToApply->eclipseCaseData()->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->daysSinceSimulationStart();
|
|
|
|
progress.incrementProgress();
|
|
|
|
for ( size_t timeStep = 0; timeStep < daysSinceSimulationStart.size(); timeStep++ )
|
|
{
|
|
const std::vector<double>* flowrateI = nullptr;
|
|
if ( hasFlowrateI )
|
|
{
|
|
flowrateI =
|
|
&( eclipseCaseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->cellScalarResults( flrWatIAddr, timeStep ) );
|
|
}
|
|
flowrateIatAllTimeSteps.push_back( flowrateI );
|
|
|
|
const std::vector<double>* flowrateJ = nullptr;
|
|
if ( hasFlowrateJ )
|
|
{
|
|
flowrateJ =
|
|
&( eclipseCaseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->cellScalarResults( flrWatJAddr, timeStep ) );
|
|
}
|
|
flowrateJatAllTimeSteps.push_back( flowrateJ );
|
|
|
|
const std::vector<double>* flowrateK = nullptr;
|
|
if ( hasFlowrateK )
|
|
{
|
|
flowrateK =
|
|
&( eclipseCaseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->cellScalarResults( flrWatKAddr, timeStep ) );
|
|
}
|
|
flowrateKatAllTimeSteps.push_back( flowrateK );
|
|
|
|
size_t nativeTimeStepIndex = caseToApply->uiToNativeTimeStepIndex( timeStep );
|
|
const std::vector<double>* connectionFlowrate =
|
|
nncData->dynamicConnectionScalarResultByName( nncConnectionProperty, nativeTimeStepIndex );
|
|
flowrateNNCatAllTimeSteps.push_back( connectionFlowrate );
|
|
|
|
// sum all tracers at current timestep
|
|
std::vector<double> summedTracerValues( resultCellCount );
|
|
for ( const RigEclipseResultAddress& tracerResAddr : tracerResAddrs )
|
|
{
|
|
const std::vector<double>* tracerResult =
|
|
&( eclipseCaseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->cellScalarResults( tracerResAddr, timeStep ) );
|
|
|
|
for ( size_t i = 0; i < summedTracerValues.size(); i++ )
|
|
{
|
|
summedTracerValues[i] += tracerResult->at( i );
|
|
}
|
|
}
|
|
summedTracersAtAllTimesteps.push_back( summedTracerValues );
|
|
|
|
progress.incrementProgress();
|
|
}
|
|
|
|
progress.setNextProgressIncrement( 2 * timeStepCount );
|
|
progress.setProgressDescription( "Calculating" );
|
|
|
|
calculate( mainGrid,
|
|
caseToApply,
|
|
daysSinceSimulationStart,
|
|
porvResults,
|
|
swcrResults,
|
|
flowrateIatAllTimeSteps,
|
|
flowrateJatAllTimeSteps,
|
|
flowrateKatAllTimeSteps,
|
|
connections,
|
|
flowrateNNCatAllTimeSteps,
|
|
summedTracersAtAllTimesteps );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<std::vector<double>>& RigNumberOfFloodedPoreVolumesCalculator::numberOfFloodedPorevolumes()
|
|
{
|
|
return m_cumWinflowPVAllTimeSteps;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigNumberOfFloodedPoreVolumesCalculator::calculate( RigMainGrid* mainGrid,
|
|
RimEclipseCase* caseToApply,
|
|
std::vector<double> daysSinceSimulationStart,
|
|
const std::vector<double>* porvResultsActiveCellsOnly,
|
|
const std::vector<double>* swcrResults,
|
|
std::vector<const std::vector<double>*> flowrateIatAllTimeSteps,
|
|
std::vector<const std::vector<double>*> flowrateJatAllTimeSteps,
|
|
std::vector<const std::vector<double>*> flowrateKatAllTimeSteps,
|
|
const RigConnectionContainer& connections,
|
|
std::vector<const std::vector<double>*> flowrateNNCatAllTimeSteps,
|
|
std::vector<std::vector<double>> summedTracersAtAllTimesteps )
|
|
{
|
|
// size_t totalNumberOfCells = mainGrid->globalCellArray().size();
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
size_t resultCellCount = actCellInfo->reservoirActiveCellCount();
|
|
|
|
caf::ProgressInfo progress( 2 * daysSinceSimulationStart.size(), "" );
|
|
|
|
std::vector<std::vector<double>> cellQwInAtAllTimeSteps;
|
|
std::vector<double> cellQwInTimeStep0( resultCellCount );
|
|
cellQwInAtAllTimeSteps.push_back( cellQwInTimeStep0 );
|
|
|
|
for ( size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++ )
|
|
{
|
|
std::vector<double> totoalFlowrateIntoCell( resultCellCount ); // brukt result celle index / active antall i
|
|
// stedet
|
|
|
|
if ( flowrateIatAllTimeSteps[timeStep - 1] != nullptr && flowrateJatAllTimeSteps[timeStep - 1] != nullptr &&
|
|
flowrateKatAllTimeSteps[timeStep - 1] != nullptr )
|
|
|
|
{
|
|
const std::vector<double>* flowrateI = flowrateIatAllTimeSteps[timeStep - 1];
|
|
const std::vector<double>* flowrateJ = flowrateJatAllTimeSteps[timeStep - 1];
|
|
const std::vector<double>* flowrateK = flowrateKatAllTimeSteps[timeStep - 1];
|
|
|
|
if ( flowrateI->size() > 0 && flowrateJ->size() > 0 && flowrateK->size() > 0 )
|
|
{
|
|
distributeNeighbourCellFlow( mainGrid,
|
|
caseToApply,
|
|
summedTracersAtAllTimesteps[timeStep - 1],
|
|
flowrateI,
|
|
flowrateJ,
|
|
flowrateK,
|
|
totoalFlowrateIntoCell );
|
|
}
|
|
}
|
|
|
|
const std::vector<double>* flowrateNNC = flowrateNNCatAllTimeSteps[timeStep - 1];
|
|
|
|
if ( flowrateNNC && flowrateNNC->size() > 0 )
|
|
{
|
|
distributeNNCflow( connections, caseToApply, summedTracersAtAllTimesteps[timeStep - 1], flowrateNNC, totoalFlowrateIntoCell );
|
|
}
|
|
|
|
std::vector<double> CellQwIn( resultCellCount );
|
|
|
|
double daysSinceSimStartNow = daysSinceSimulationStart[timeStep];
|
|
double daysSinceSimStartLastTimeStep = daysSinceSimulationStart[timeStep - 1];
|
|
double deltaT = daysSinceSimStartNow - daysSinceSimStartLastTimeStep;
|
|
|
|
for ( size_t cellResultIndex = 0; cellResultIndex < resultCellCount; cellResultIndex++ )
|
|
{
|
|
CellQwIn[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep - 1][cellResultIndex] +
|
|
( totoalFlowrateIntoCell[cellResultIndex] ) * deltaT;
|
|
}
|
|
cellQwInAtAllTimeSteps.push_back( CellQwIn );
|
|
|
|
progress.incrementProgress();
|
|
}
|
|
|
|
// Calculate number-of-cell-PV flooded
|
|
|
|
std::vector<double> cumWinflowPVTimeStep0( resultCellCount );
|
|
m_cumWinflowPVAllTimeSteps.clear();
|
|
m_cumWinflowPVAllTimeSteps.push_back( cumWinflowPVTimeStep0 );
|
|
|
|
for ( size_t timeStep = 1; timeStep < daysSinceSimulationStart.size(); timeStep++ )
|
|
{
|
|
std::vector<double> cumWinflowPV( resultCellCount );
|
|
for ( size_t cellResultIndex = 0; cellResultIndex < resultCellCount; cellResultIndex++ )
|
|
{
|
|
double scaledPoreVolume = porvResultsActiveCellsOnly->at( cellResultIndex );
|
|
if ( swcrResults != nullptr && swcrResults->size() == resultCellCount )
|
|
{
|
|
scaledPoreVolume = scaledPoreVolume * ( 1 - swcrResults->at( cellResultIndex ) );
|
|
}
|
|
|
|
cumWinflowPV[cellResultIndex] = cellQwInAtAllTimeSteps[timeStep][cellResultIndex] / scaledPoreVolume;
|
|
}
|
|
m_cumWinflowPVAllTimeSteps.push_back( cumWinflowPV );
|
|
progress.incrementProgress();
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigNumberOfFloodedPoreVolumesCalculator::distributeNNCflow( const RigConnectionContainer& connections,
|
|
RimEclipseCase* caseToApply,
|
|
const std::vector<double>& summedTracerValues,
|
|
const std::vector<double>* flowrateNNC,
|
|
std::vector<double>& flowrateIntoCell )
|
|
{
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
|
|
// Find max count for connections with result. Allen results introduce connections without results
|
|
size_t connectionsWithResultCount = std::min( flowrateNNC->size(), connections.size() );
|
|
|
|
for ( size_t connectionIndex = 0; connectionIndex < connectionsWithResultCount; connectionIndex++ )
|
|
{
|
|
RigConnection connection = connections[connectionIndex];
|
|
double connectionValue = flowrateNNC->at( connectionIndex );
|
|
|
|
size_t cell1Index = connection.c1GlobIdx();
|
|
size_t cell1ResultIndex = actCellInfo->cellResultIndex( cell1Index );
|
|
|
|
size_t cell2Index = connection.c2GlobIdx();
|
|
size_t cell2ResultIndex = actCellInfo->cellResultIndex( cell2Index );
|
|
|
|
if ( connectionValue > 0 )
|
|
{
|
|
// Flow out of cell with cell1index, into cell cell2index
|
|
flowrateIntoCell[cell2ResultIndex] += connectionValue * summedTracerValues[cell1ResultIndex];
|
|
}
|
|
else if ( connectionValue < 0 )
|
|
{
|
|
// flow out of cell with cell2index, into cell cell1index
|
|
flowrateIntoCell[cell1ResultIndex] += -1.0 * connectionValue * summedTracerValues[cell2ResultIndex];
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigNumberOfFloodedPoreVolumesCalculator::distributeNeighbourCellFlow( RigMainGrid* mainGrid,
|
|
RimEclipseCase* caseToApply,
|
|
const std::vector<double>& summedTracerValues,
|
|
const std::vector<double>* flrWatResultI,
|
|
const std::vector<double>* flrWatResultJ,
|
|
const std::vector<double>* flrWatResultK,
|
|
std::vector<double>& totalFlowrateIntoCell )
|
|
{
|
|
RigActiveCellInfo* actCellInfo = caseToApply->eclipseCaseData()->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
|
|
for ( size_t globalCellIndex = 0; globalCellIndex < mainGrid->globalCellArray().size(); globalCellIndex++ )
|
|
{
|
|
if ( !actCellInfo->isActive( globalCellIndex ) ) continue;
|
|
|
|
const RigCell& cell = mainGrid->globalCellArray()[globalCellIndex];
|
|
RigGridBase* hostGrid = cell.hostGrid();
|
|
size_t gridLocalCellIndex = cell.gridLocalCellIndex();
|
|
|
|
size_t cellResultIndex = actCellInfo->cellResultIndex( globalCellIndex );
|
|
|
|
size_t i, j, k;
|
|
hostGrid->ijkFromCellIndex( gridLocalCellIndex, &i, &j, &k );
|
|
|
|
if ( i < ( hostGrid->cellCountI() - 1 ) )
|
|
{
|
|
size_t gridLocalCellIndexPosINeighbour = hostGrid->cellIndexFromIJK( i + 1, j, k );
|
|
size_t reservoirCellIndexPosINeighbour = hostGrid->reservoirCellIndex( gridLocalCellIndexPosINeighbour );
|
|
size_t cellResultIndexPosINeighbour = actCellInfo->cellResultIndex( reservoirCellIndexPosINeighbour );
|
|
|
|
if ( !actCellInfo->isActive( reservoirCellIndexPosINeighbour ) ) continue;
|
|
|
|
if ( hostGrid->cell( gridLocalCellIndexPosINeighbour ).subGrid() != nullptr )
|
|
{
|
|
// subgrid exists in cell, will be handled though NNCs
|
|
continue;
|
|
}
|
|
|
|
if ( flrWatResultI->at( cellResultIndex ) > 0 )
|
|
{
|
|
// Flow out of cell globalCellIndex, into cell i+1
|
|
totalFlowrateIntoCell[cellResultIndexPosINeighbour] +=
|
|
flrWatResultI->at( cellResultIndex ) * summedTracerValues[cellResultIndex];
|
|
}
|
|
else if ( flrWatResultI->at( cellResultIndex ) < 0 )
|
|
{
|
|
// Flow into cell globelCellIndex, from cell i+1
|
|
totalFlowrateIntoCell[cellResultIndex] +=
|
|
( -1.0 ) * flrWatResultI->at( cellResultIndex ) * summedTracerValues[cellResultIndexPosINeighbour];
|
|
}
|
|
}
|
|
|
|
if ( j < ( hostGrid->cellCountJ() - 1 ) )
|
|
{
|
|
size_t gridLocalCellIndexPosJNeighbour = hostGrid->cellIndexFromIJK( i, j + 1, k );
|
|
size_t reservoirCellIndexPosJNeighbour = hostGrid->reservoirCellIndex( gridLocalCellIndexPosJNeighbour );
|
|
size_t cellResultIndexPosJNeighbour = actCellInfo->cellResultIndex( reservoirCellIndexPosJNeighbour );
|
|
|
|
if ( !actCellInfo->isActive( reservoirCellIndexPosJNeighbour ) ) continue;
|
|
|
|
if ( hostGrid->cell( gridLocalCellIndexPosJNeighbour ).subGrid() != nullptr )
|
|
{
|
|
// subgrid exists in cell, will be handled though NNCs
|
|
continue;
|
|
}
|
|
|
|
if ( flrWatResultJ->at( cellResultIndex ) > 0 )
|
|
{
|
|
// Flow out of cell globalCellIndex, into cell i+1
|
|
totalFlowrateIntoCell[cellResultIndexPosJNeighbour] +=
|
|
flrWatResultJ->at( cellResultIndex ) * summedTracerValues[cellResultIndex];
|
|
}
|
|
else if ( flrWatResultJ->at( cellResultIndex ) < 0 )
|
|
{
|
|
// Flow into cell globelCellIndex, from cell i+1
|
|
totalFlowrateIntoCell[cellResultIndex] +=
|
|
( -1.0 ) * flrWatResultJ->at( cellResultIndex ) * summedTracerValues[cellResultIndexPosJNeighbour];
|
|
}
|
|
}
|
|
|
|
if ( k < ( hostGrid->cellCountK() - 1 ) )
|
|
{
|
|
size_t gridLocalCellIndexPosKNeighbour = hostGrid->cellIndexFromIJK( i, j, k + 1 );
|
|
size_t reservoirCellIndexPosKNeighbour = hostGrid->reservoirCellIndex( gridLocalCellIndexPosKNeighbour );
|
|
size_t cellResultIndexPosKNeighbour = actCellInfo->cellResultIndex( reservoirCellIndexPosKNeighbour );
|
|
|
|
if ( !actCellInfo->isActive( reservoirCellIndexPosKNeighbour ) ) continue;
|
|
|
|
if ( hostGrid->cell( gridLocalCellIndexPosKNeighbour ).subGrid() != nullptr )
|
|
{
|
|
// subgrid exists in cell, will be handled though NNCs
|
|
continue;
|
|
}
|
|
|
|
if ( flrWatResultK->at( cellResultIndex ) > 0 )
|
|
{
|
|
// Flow out of cell globalCellIndex, into cell i+1
|
|
totalFlowrateIntoCell[cellResultIndexPosKNeighbour] +=
|
|
flrWatResultK->at( cellResultIndex ) * summedTracerValues[cellResultIndex];
|
|
}
|
|
else if ( flrWatResultK->at( cellResultIndex ) < 0 )
|
|
{
|
|
// Flow into cell globelCellIndex, from cell i+1
|
|
totalFlowrateIntoCell[cellResultIndex] +=
|
|
( -1.0 ) * flrWatResultK->at( cellResultIndex ) * summedTracerValues[cellResultIndexPosKNeighbour];
|
|
}
|
|
}
|
|
}
|
|
}
|