ResInsight/ApplicationLibCode/ModelVisualization/Intersections/RivBoxIntersectionGeometryGenerator.cpp
2021-01-11 15:27:45 +01:00

504 lines
22 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivBoxIntersectionGeometryGenerator.h"
#include "RimBoxIntersection.h"
#include "RimCase.h"
#include "RimGridView.h"
#include "cafHexGridIntersectionTools/cafHexGridIntersectionTools.h"
#include "cvfDrawableGeo.h"
#include "cvfPlane.h"
#include "cvfPrimitiveSetDirect.h"
#include "cvfStructGrid.h"
#include <array>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivBoxIntersectionGeometryGenerator::RivBoxIntersectionGeometryGenerator( RimBoxIntersection* intersectionBox,
const RivIntersectionHexGridInterface* grid )
: m_intersectionBoxDefinition( intersectionBox )
, m_hexGrid( grid )
{
m_triangleVxes = new cvf::Vec3fArray;
m_cellBorderLineVxes = new cvf::Vec3fArray;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivBoxIntersectionGeometryGenerator::~RivBoxIntersectionGeometryGenerator()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RivBoxIntersectionGeometryGenerator::isAnyGeometryPresent() const
{
if ( m_triangleVxes->size() == 0 )
{
return false;
}
else
{
return true;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivBoxIntersectionGeometryGenerator::generateSurface()
{
calculateArrays();
CVF_ASSERT( m_triangleVxes.notNull() );
if ( m_triangleVxes->size() == 0 ) return nullptr;
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
geo->setFromTriangleVertexArray( m_triangleVxes.p() );
return geo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivBoxIntersectionGeometryGenerator::createMeshDrawable()
{
if ( !( m_cellBorderLineVxes.notNull() && m_cellBorderLineVxes->size() != 0 ) ) return nullptr;
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
geo->setVertexArray( m_cellBorderLineVxes.p() );
cvf::ref<cvf::PrimitiveSetDirect> prim = new cvf::PrimitiveSetDirect( cvf::PT_LINES );
prim->setIndexCount( m_cellBorderLineVxes->size() );
geo->addPrimitiveSet( prim.p() );
return geo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RivBoxIntersectionGeometryGenerator::triangleToCellIndex() const
{
CVF_ASSERT( m_triangleVxes->size() );
return m_triangleToCellIdxMap;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<RivIntersectionVertexWeights>&
RivBoxIntersectionGeometryGenerator::triangleVxToCellCornerInterpolationWeights() const
{
CVF_ASSERT( m_triangleVxes->size() );
return m_triVxToCellCornerWeights;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const cvf::Vec3fArray* RivBoxIntersectionGeometryGenerator::triangleVxes() const
{
CVF_ASSERT( m_triangleVxes->size() );
return m_triangleVxes.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class Box
{
public:
using FaceType = cvf::StructGridInterface::FaceType;
Box( const cvf::Mat4d& origin, const cvf::Vec3d& size )
: m_origin( origin )
, m_size( size )
{
}
std::array<cvf::Plane, 6> planes()
{
std::array<cvf::Plane, 6> boxPlanes;
boxPlanes[FaceType::POS_I].setFromPointAndNormal( m_origin.translation() + m_size, cvf::Vec3d( m_origin.col( 0 ) ) );
boxPlanes[FaceType::NEG_I].setFromPointAndNormal( m_origin.translation(), -cvf::Vec3d( m_origin.col( 0 ) ) );
boxPlanes[FaceType::POS_J].setFromPointAndNormal( m_origin.translation() + m_size, cvf::Vec3d( m_origin.col( 1 ) ) );
boxPlanes[FaceType::NEG_J].setFromPointAndNormal( m_origin.translation(), -cvf::Vec3d( m_origin.col( 1 ) ) );
boxPlanes[FaceType::POS_K].setFromPointAndNormal( m_origin.translation() + m_size, cvf::Vec3d( m_origin.col( 2 ) ) );
boxPlanes[FaceType::NEG_K].setFromPointAndNormal( m_origin.translation(), -cvf::Vec3d( m_origin.col( 2 ) ) );
return boxPlanes;
}
std::array<cvf::Vec3d, 4> faceCorners( FaceType face )
{
std::array<cvf::Vec3d, 4> corners;
cvf::Vec3d sx = cvf::Vec3d( m_origin.col( 0 ) ) * m_size[0];
cvf::Vec3d sy = cvf::Vec3d( m_origin.col( 1 ) ) * m_size[1];
cvf::Vec3d sz = cvf::Vec3d( m_origin.col( 2 ) ) * m_size[2];
switch ( face )
{
case FaceType::POS_I:
corners[0] = m_origin.translation() + sx;
corners[1] = m_origin.translation() + sx + sy;
corners[2] = m_origin.translation() + sx + sy + sz;
corners[3] = m_origin.translation() + sx + sz;
break;
case FaceType::NEG_I:
corners[0] = m_origin.translation();
corners[1] = m_origin.translation() + sz;
corners[2] = m_origin.translation() + sy + sz;
corners[3] = m_origin.translation() + sy;
break;
case FaceType::POS_J:
corners[0] = m_origin.translation() + sy;
corners[1] = m_origin.translation() + sy + sz;
corners[2] = m_origin.translation() + sy + sx + sz;
corners[3] = m_origin.translation() + sy + sx;
break;
case FaceType::NEG_J:
corners[0] = m_origin.translation();
corners[1] = m_origin.translation() + sx;
corners[2] = m_origin.translation() + sx + sz;
corners[3] = m_origin.translation() + sz;
break;
case FaceType::POS_K:
corners[0] = m_origin.translation() + sz;
corners[1] = m_origin.translation() + sz + sx;
corners[2] = m_origin.translation() + sz + sx + sy;
corners[3] = m_origin.translation() + sz + sy;
break;
case FaceType::NEG_K:
corners[0] = m_origin.translation();
corners[1] = m_origin.translation() + sy;
corners[2] = m_origin.translation() + sx + sy;
corners[3] = m_origin.translation() + sx;
break;
}
return corners;
}
// Returns the four adjacent faces in the Pos, Neg, Pos, Neg order
std::array<FaceType, 4> adjacentFaces( FaceType face )
{
std::array<FaceType, 4> clipFaces = { FaceType::NO_FACE, FaceType::NO_FACE, FaceType::NO_FACE, FaceType::NO_FACE };
FaceType oppFace = cvf::StructGridInterface::oppositeFace( face );
int clipFaceCount = 0;
for ( int faceCand = 0; faceCand < 6; ++faceCand )
{
if ( faceCand != face && faceCand != oppFace )
{
clipFaces[clipFaceCount] = (FaceType)faceCand;
clipFaceCount++;
}
}
return clipFaces;
}
private:
cvf::Mat4d m_origin;
cvf::Vec3d m_size;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimBoxIntersection* RivBoxIntersectionGeometryGenerator::intersectionBox() const
{
return m_intersectionBoxDefinition;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivBoxIntersectionGeometryGenerator::calculateArrays()
{
if ( m_triangleVxes->size() ) return;
std::vector<cvf::Vec3f> triangleVertices;
std::vector<cvf::Vec3f> cellBorderLineVxes;
cvf::Vec3d displayOffset( 0, 0, 0 );
{
RimGridView* gridView = nullptr;
m_intersectionBoxDefinition->firstAncestorOrThisOfType( gridView );
if ( gridView && gridView->ownerCase() )
{
displayOffset = gridView->ownerCase()->displayModelOffset();
}
}
Box box( m_intersectionBoxDefinition->boxOrigin(), m_intersectionBoxDefinition->boxSize() );
std::array<cvf::Plane, 6> boxPlanes = box.planes();
RimBoxIntersection::SinglePlaneState singlePlane = m_intersectionBoxDefinition->singlePlaneState();
int startFace = 0;
int endFace = 5;
if ( singlePlane == RimBoxIntersection::PLANE_STATE_X ) startFace = endFace = Box::FaceType::POS_I;
if ( singlePlane == RimBoxIntersection::PLANE_STATE_Y ) startFace = endFace = Box::FaceType::POS_J;
if ( singlePlane == RimBoxIntersection::PLANE_STATE_Z ) startFace = endFace = Box::FaceType::POS_K;
for ( int faceIdx = startFace; faceIdx <= endFace; ++faceIdx )
{
cvf::Plane plane = boxPlanes[faceIdx];
std::array<Box::FaceType, 4> clipFaces = box.adjacentFaces( (Box::FaceType)faceIdx );
cvf::Plane p1Plane = boxPlanes[clipFaces[1]];
cvf::Plane p2Plane = boxPlanes[clipFaces[0]];
cvf::Plane p3Plane = boxPlanes[clipFaces[3]];
cvf::Plane p4Plane = boxPlanes[clipFaces[2]];
p1Plane.flip();
p2Plane.flip();
p3Plane.flip();
p4Plane.flip();
std::array<cvf::Vec3d, 4> faceCorners = box.faceCorners( (Box::FaceType)faceIdx );
cvf::BoundingBox sectionBBox;
for ( cvf::Vec3d& corner : faceCorners )
sectionBBox.add( corner );
// Similar code as IntersectionGenerator :
std::vector<size_t> columnCellCandidates;
m_hexGrid->findIntersectingCells( sectionBBox, &columnCellCandidates );
std::vector<caf::HexGridIntersectionTools::ClipVx> hexPlaneCutTriangleVxes;
hexPlaneCutTriangleVxes.reserve( 5 * 3 );
std::vector<int> cellFaceForEachTriangleEdge;
cellFaceForEachTriangleEdge.reserve( 5 * 3 );
cvf::Vec3d cellCorners[8];
size_t cornerIndices[8];
for ( size_t cccIdx = 0; cccIdx < columnCellCandidates.size(); ++cccIdx )
{
size_t globalCellIdx = columnCellCandidates[cccIdx];
if ( !m_hexGrid->useCell( globalCellIdx ) ) continue;
hexPlaneCutTriangleVxes.clear();
m_hexGrid->cellCornerVertices( globalCellIdx, cellCorners );
m_hexGrid->cellCornerIndices( globalCellIdx, cornerIndices );
caf::HexGridIntersectionTools::planeHexIntersectionMC( plane,
cellCorners,
cornerIndices,
&hexPlaneCutTriangleVxes,
&cellFaceForEachTriangleEdge );
std::vector<caf::HexGridIntersectionTools::ClipVx> clippedTriangleVxes_once;
std::vector<int> cellFaceForEachClippedTriangleEdge_once;
caf::HexGridIntersectionTools::clipTrianglesBetweenTwoParallelPlanes( hexPlaneCutTriangleVxes,
cellFaceForEachTriangleEdge,
p1Plane,
p2Plane,
&clippedTriangleVxes_once,
&cellFaceForEachClippedTriangleEdge_once );
for ( caf::HexGridIntersectionTools::ClipVx& clvx : clippedTriangleVxes_once )
if ( !clvx.isVxIdsNative ) clvx.derivedVxLevel = 0;
std::vector<caf::HexGridIntersectionTools::ClipVx> clippedTriangleVxes;
std::vector<int> cellFaceForEachClippedTriangleEdge;
caf::HexGridIntersectionTools::clipTrianglesBetweenTwoParallelPlanes( clippedTriangleVxes_once,
cellFaceForEachClippedTriangleEdge_once,
p3Plane,
p4Plane,
&clippedTriangleVxes,
&cellFaceForEachClippedTriangleEdge );
for ( caf::HexGridIntersectionTools::ClipVx& clvx : clippedTriangleVxes )
if ( !clvx.isVxIdsNative && clvx.derivedVxLevel == -1 ) clvx.derivedVxLevel = 1;
size_t clippedTriangleCount = clippedTriangleVxes.size() / 3;
for ( uint tIdx = 0; tIdx < clippedTriangleCount; ++tIdx )
{
uint triVxIdx = tIdx * 3;
// Accumulate triangle vertices
cvf::Vec3f p0( clippedTriangleVxes[triVxIdx + 0].vx - displayOffset );
cvf::Vec3f p1( clippedTriangleVxes[triVxIdx + 1].vx - displayOffset );
cvf::Vec3f p2( clippedTriangleVxes[triVxIdx + 2].vx - displayOffset );
triangleVertices.push_back( p0 );
triangleVertices.push_back( p1 );
triangleVertices.push_back( p2 );
// Accumulate mesh lines
#define isFace( faceEnum ) ( 0 <= faceEnum && faceEnum <= 5 )
if ( isFace( cellFaceForEachClippedTriangleEdge[triVxIdx] ) )
{
cellBorderLineVxes.push_back( p0 );
cellBorderLineVxes.push_back( p1 );
}
if ( isFace( cellFaceForEachClippedTriangleEdge[triVxIdx + 1] ) )
{
cellBorderLineVxes.push_back( p1 );
cellBorderLineVxes.push_back( p2 );
}
if ( isFace( cellFaceForEachClippedTriangleEdge[triVxIdx + 2] ) )
{
cellBorderLineVxes.push_back( p2 );
cellBorderLineVxes.push_back( p0 );
}
// Mapping to cell index
m_triangleToCellIdxMap.push_back( globalCellIdx );
// Interpolation from nodes
for ( int i = 0; i < 3; ++i )
{
caf::HexGridIntersectionTools::ClipVx cvx = clippedTriangleVxes[triVxIdx + i];
if ( cvx.isVxIdsNative )
{
m_triVxToCellCornerWeights.push_back( RivIntersectionVertexWeights( cvx.clippedEdgeVx1Id,
cvx.clippedEdgeVx2Id,
cvx.normDistFromEdgeVx1 ) );
}
else
{
caf::HexGridIntersectionTools::ClipVx cvx1;
caf::HexGridIntersectionTools::ClipVx cvx2;
if ( cvx.derivedVxLevel == 0 )
{
cvx1 = hexPlaneCutTriangleVxes[cvx.clippedEdgeVx1Id];
cvx2 = hexPlaneCutTriangleVxes[cvx.clippedEdgeVx2Id];
}
else if ( cvx.derivedVxLevel == 1 )
{
cvx1 = clippedTriangleVxes_once[cvx.clippedEdgeVx1Id];
cvx2 = clippedTriangleVxes_once[cvx.clippedEdgeVx2Id];
}
else
{
CVF_ASSERT( false );
}
if ( cvx1.isVxIdsNative && cvx2.isVxIdsNative )
{
m_triVxToCellCornerWeights.push_back( RivIntersectionVertexWeights( cvx1.clippedEdgeVx1Id,
cvx1.clippedEdgeVx2Id,
cvx1.normDistFromEdgeVx1,
cvx2.clippedEdgeVx1Id,
cvx2.clippedEdgeVx2Id,
cvx2.normDistFromEdgeVx1,
cvx.normDistFromEdgeVx1 ) );
}
else
{
caf::HexGridIntersectionTools::ClipVx cvx11;
caf::HexGridIntersectionTools::ClipVx cvx12;
caf::HexGridIntersectionTools::ClipVx cvx21;
caf::HexGridIntersectionTools::ClipVx cvx22;
if ( cvx1.isVxIdsNative )
{
cvx11 = cvx1;
cvx12 = cvx1;
}
else if ( cvx1.derivedVxLevel == 0 )
{
cvx11 = hexPlaneCutTriangleVxes[cvx1.clippedEdgeVx1Id];
cvx12 = hexPlaneCutTriangleVxes[cvx1.clippedEdgeVx2Id];
}
else if ( cvx2.derivedVxLevel == 1 )
{
cvx11 = clippedTriangleVxes_once[cvx1.clippedEdgeVx1Id];
cvx12 = clippedTriangleVxes_once[cvx1.clippedEdgeVx2Id];
}
else
{
CVF_ASSERT( false );
}
if ( cvx2.isVxIdsNative )
{
cvx21 = cvx2;
cvx22 = cvx2;
}
else if ( cvx2.derivedVxLevel == 0 )
{
cvx21 = hexPlaneCutTriangleVxes[cvx2.clippedEdgeVx1Id];
cvx22 = hexPlaneCutTriangleVxes[cvx2.clippedEdgeVx2Id];
}
else if ( cvx2.derivedVxLevel == 1 )
{
cvx21 = clippedTriangleVxes_once[cvx2.clippedEdgeVx1Id];
cvx22 = clippedTriangleVxes_once[cvx2.clippedEdgeVx2Id];
}
else
{
CVF_ASSERT( false );
}
CVF_TIGHT_ASSERT( cvx11.isVxIdsNative && cvx12.isVxIdsNative && cvx21.isVxIdsNative &&
cvx22.isVxIdsNative );
m_triVxToCellCornerWeights.push_back(
RivIntersectionVertexWeights( cvx11.clippedEdgeVx1Id,
cvx11.clippedEdgeVx2Id,
cvx11.normDistFromEdgeVx1,
cvx12.clippedEdgeVx1Id,
cvx12.clippedEdgeVx2Id,
cvx2.normDistFromEdgeVx1,
cvx21.clippedEdgeVx1Id,
cvx21.clippedEdgeVx2Id,
cvx21.normDistFromEdgeVx1,
cvx22.clippedEdgeVx1Id,
cvx22.clippedEdgeVx2Id,
cvx22.normDistFromEdgeVx1,
cvx1.normDistFromEdgeVx1,
cvx2.normDistFromEdgeVx1,
cvx.normDistFromEdgeVx1 ) );
}
}
}
}
}
}
m_cellBorderLineVxes->assign( cellBorderLineVxes );
m_triangleVxes->assign( triangleVertices );
}