ResInsight/ApplicationCode/Commands/CompletionExportCommands/RicMswValveAccumulators.cpp

146 lines
5.9 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018 Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RicMswValveAccumulators.h"
#include "RiaStatisticsTools.h"
#include "RicMswCompletions.h"
#include "RimPerforationInterval.h"
#include "RimWellPathValve.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RicMswICDAccumulator::RicMswICDAccumulator(RiaEclipseUnitTools::UnitSystem unitSystem)
: RicMswValveAccumulator(unitSystem)
, m_areaSum(0.0)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicMswICDAccumulator::accumulateValveParameters(const RimWellPathValve* wellPathValve, size_t subValve, double contributionFraction)
{
CVF_ASSERT(wellPathValve);
if (wellPathValve->componentType() == RiaDefines::ICV || wellPathValve->componentType() == RiaDefines::ICD)
{
double icdOrificeRadius = wellPathValve->orificeDiameter(m_unitSystem) / 2;
double icdArea = icdOrificeRadius * icdOrificeRadius * cvf::PI_D;
m_areaSum += icdArea * contributionFraction;
m_coefficientCalculator.addValueAndWeight(wellPathValve->flowCoefficient(), icdArea * contributionFraction);
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicMswICDAccumulator::applyToSuperValve(std::shared_ptr<RicMswValve> valve)
{
std::shared_ptr<RicMswWsegValve> icd = std::dynamic_pointer_cast<RicMswWsegValve>(valve);
CVF_ASSERT(icd);
icd->setArea(m_areaSum);
if (m_coefficientCalculator.validAggregatedWeight())
{
icd->setFlowCoefficient(m_coefficientCalculator.weightedMean());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RicMswAICDAccumulator::RicMswAICDAccumulator(RiaEclipseUnitTools::UnitSystem unitSystem)
: RicMswValveAccumulator(unitSystem), m_valid(false), m_deviceOpen(false), m_accumulatedLength(0.0)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RicMswAICDAccumulator::accumulateValveParameters(const RimWellPathValve* wellPathValve, size_t subValve, double contributionFraction)
{
CVF_ASSERT(wellPathValve);
if (wellPathValve->componentType() == RiaDefines::AICD)
{
const RimWellPathAicdParameters* params = wellPathValve->aicdParameters();
if (params->isValid())
{
m_valid = true;
m_deviceOpen = m_deviceOpen || params->isOpen();
if (params->isOpen())
{
std::array<double, AICD_NUM_PARAMS> values = params->doubleValues();
for (size_t i = 0; i < (size_t)AICD_NUM_PARAMS; ++i)
{
if (RiaStatisticsTools::isValidNumber(values[i]))
{
m_meanCalculators[i].addValueAndWeight(values[i], contributionFraction);
}
}
std::pair<double, double> valveSegment = wellPathValve->valveSegments()[subValve];
double valveSegmentLength = std::fabs(valveSegment.second - valveSegment.first);
const RimPerforationInterval* perfInterval = nullptr;
wellPathValve->firstAncestorOrThisOfTypeAsserted(perfInterval);
double perfIntervalLength = std::fabs(perfInterval->endMD() - perfInterval->startMD());
double lengthFraction = 1.0;
if (perfIntervalLength > 1.0e-8)
{
lengthFraction = valveSegmentLength / perfIntervalLength;
}
m_accumulatedLength += lengthFraction * contributionFraction;
}
}
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RicMswAICDAccumulator::applyToSuperValve(std::shared_ptr<RicMswValve> valve)
{
std::shared_ptr<RicMswPerforationAICD> aicd = std::dynamic_pointer_cast<RicMswPerforationAICD>(valve);
if (aicd)
{
std::array<double, AICD_NUM_PARAMS> values;
for (size_t i = 0; i < (size_t) AICD_NUM_PARAMS; ++i)
{
if (m_meanCalculators[i].validAggregatedWeight())
{
values[i] = m_meanCalculators[i].weightedMean();
}
else
{
values[i] = std::numeric_limits<double>::infinity();
}
}
aicd->setIsValid(m_valid);
aicd->setIsOpen(m_deviceOpen);
aicd->setLength(m_accumulatedLength);
aicd->values() = values;
}
}