ResInsight/ApplicationCode/ReservoirDataModel/RigSimulationWellCenterLineCalculator.cpp
Jacob Støren 4d6deef8ab (#708) Fixed simulation well geometry and color mapping.
Had been sligtly off since 1.5.0.
2015-12-14 11:25:55 +01:00

381 lines
17 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigSimulationWellCenterLineCalculator.h"
#include "RimEclipseView.h"
#include "RimEclipseWell.h"
#include "RimEclipseWellCollection.h"
#include "RimEclipseCase.h"
#include "RigCaseData.h"
#include "cvfRay.h"
//--------------------------------------------------------------------------------------------------
/// Based on the points and cells, calculate a pipe centerline
/// The returned CellIds is one less than the number of centerline points,
/// and are describing the lines between the points, starting with the first line
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::calculateWellPipeCenterline(RimEclipseWell* rimWell,
std::vector< std::vector <cvf::Vec3d> >& pipeBranchesCLCoords,
std::vector< std::vector <RigWellResultPoint> >& pipeBranchesCellIds)
{
bool isAutoDetectBranches = false;
RigCaseData* eclipseCaseData = NULL;
RigSingleWellResultsData* wellResults = NULL;
{
CVF_ASSERT(rimWell);
RimEclipseView* eclipseView;
rimWell->firstAnchestorOrThisOfType(eclipseView);
CVF_ASSERT(eclipseView);
isAutoDetectBranches = eclipseView->wellCollection()->isAutoDetectingBranches();
eclipseCaseData = eclipseView->eclipseCase()->reservoirData();
wellResults = rimWell->wellResults();
}
// Make sure we have computed the static representation of the well
if (wellResults->m_staticWellCells.m_wellResultBranches.size() == 0)
{
wellResults->computeStaticWellCellPath();
}
const RigWellResultFrame& staticWellFrame = wellResults->m_staticWellCells;
if (staticWellFrame.m_wellResultBranches.size() == 0) return;
// Initialize the return arrays
pipeBranchesCLCoords.clear();
pipeBranchesCellIds.clear();
// Well head
// Match this position with well head position in RivWellHeadPartMgr::buildWellHeadParts()
const RigCell& whCell = eclipseCaseData->cellFromWellResultCell(staticWellFrame.m_wellHead);
cvf::Vec3d whStartPos = whCell.faceCenter(cvf::StructGridInterface::NEG_K);
const RigWellResultPoint* whResCell = &(staticWellFrame.m_wellHead);
// Loop over all the well branches
const std::vector<RigWellResultBranch>& resBranches = staticWellFrame.m_wellResultBranches;
bool hasResultCells = false;
if (resBranches.size())
{
for (size_t i = 0 ; i < resBranches.size(); ++i)
{
if (resBranches[i].m_branchResultPoints.size() != 0)
{
hasResultCells = true;
break;
}
}
}
if (hasResultCells)
{
// Add extra coordinate between cell face and cell center
// to make sure the well pipe terminated in a segment parallel to z-axis
cvf::Vec3d whIntermediate = whStartPos;
whIntermediate.z() = (whStartPos.z() + whCell.center().z()) / 2.0;
const RigWellResultPoint* prevWellResPoint = NULL;
CVF_ASSERT(wellResults->isMultiSegmentWell() || resBranches.size() <= 1);
// The centerline is calculated by adding a point when the pipe enters a cell,
// and one when the line leaves the cell.
// For the sake of the loop:
// The currentResultPoint (Cell) and the one we index by the loop variable is the one we calculate the entry point to.
// The previous cell is the one we leave, and calculate the "out-point" from
for (size_t brIdx = 0; brIdx < resBranches.size(); brIdx++)
{
// Skip empty branches. Do not know why they exist, but they make problems.
bool hasValidData = false;
for (size_t cIdx = 0; cIdx < resBranches[brIdx].m_branchResultPoints.size(); ++cIdx)
{
if (resBranches[brIdx].m_branchResultPoints[cIdx].isValid())
{
hasValidData = true;
break;
}
}
if (!hasValidData) continue;
prevWellResPoint = NULL;
// Find the start the MSW well-branch centerline. Normal wells are started "once" at wellhead in the code above
pipeBranchesCLCoords.push_back(std::vector<cvf::Vec3d>());
pipeBranchesCellIds.push_back(std::vector <RigWellResultPoint>());
if (brIdx == 0)
{
// The first branch contains segment number 1, and this is the only segment connected to well head
// See Eclipse documentation for the keyword WELSEGS
prevWellResPoint = whResCell;
pipeBranchesCLCoords.back().push_back(whStartPos);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
pipeBranchesCLCoords.back().push_back(whIntermediate);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
}
// Loop over all the resultPoints in the branch
const std::vector<RigWellResultPoint>& resBranchCells = resBranches[brIdx].m_branchResultPoints;
for (int cIdx = 0; cIdx < static_cast<int>(resBranchCells.size()); cIdx++) // Need int because cIdx can temporarily end on -1
{
std::vector<cvf::Vec3d>& branchCLCoords = pipeBranchesCLCoords.back();
std::vector<RigWellResultPoint>& branchCellIds = pipeBranchesCellIds.back();
const RigWellResultPoint& currentWellResPoint = resBranchCells[cIdx];
// Ignore invalid cells
if (!currentWellResPoint.isValid())
{
//CVF_ASSERT(false); // Some segments does not get anything yet.
continue;
}
// Add cl contribution for a geometrical resultPoint by adding exit point from previous cell,
// and then the result point position
if (!currentWellResPoint.isCell())
{
// Use the interpolated value of branch head
CVF_ASSERT(currentWellResPoint.isPointValid());
cvf::Vec3d currentPoint = currentWellResPoint.m_bottomPosition;
// If we have a real previous cell, we need to go out of it, before adding the current point
// That is: add a CL-point describing where it leaves the previous cell.
if (prevWellResPoint && prevWellResPoint->isCell())
{
// Create ray between the previous and this position
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
cvf::Vec3d centerPreviousCell = prevCell.center();
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin(centerPreviousCell);
rayToThisCell.setDirection((currentPoint - centerPreviousCell).getNormalized());
cvf::Vec3d outOfPrevCell(centerPreviousCell);
int intersectionOk = prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell);
//CVF_ASSERT(intersectionOk);
//CVF_ASSERT(intersectionOk);
if ((currentPoint - outOfPrevCell).lengthSquared() > 1e-3)
{
branchCLCoords.push_back(outOfPrevCell);
branchCellIds.push_back(RigWellResultPoint());
}
}
branchCLCoords.push_back(currentPoint);
branchCellIds.push_back(currentWellResPoint);
prevWellResPoint = &currentWellResPoint;
continue;
}
//
// Handle currentWellResPoint as a real cell result points.
//
const RigCell& cell = eclipseCaseData->cellFromWellResultCell(currentWellResPoint);
// Check if this and the previous cells has shared faces
cvf::StructGridInterface::FaceType sharedFace;
if (prevWellResPoint && prevWellResPoint->isCell() && eclipseCaseData->findSharedSourceFace(sharedFace, currentWellResPoint, *prevWellResPoint))
{
// If they share faces, the shared face center is used as point
// describing the entry of this cell. (And exit of the previous cell)
branchCLCoords.push_back(cell.faceCenter(sharedFace));
branchCellIds.push_back(currentWellResPoint);
}
else
{
// This and the previous cell does not share a face.
// Then we need to calculate the exit of the previous cell, and the entry point into this cell
cvf::Vec3d centerPreviousCell(cvf::Vec3d::ZERO);
cvf::Vec3d centerThisCell = cell.center();
bool distanceToWellHeadIsLonger = true;
// If we have a previous well result point, use its center as measure point and ray intersection start
// when considering things.
if (prevWellResPoint && prevWellResPoint->isValid())
{
if (prevWellResPoint->isCell())
{
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
centerPreviousCell = prevCell.center();
}
else
{
centerPreviousCell = prevWellResPoint->m_bottomPosition;
}
distanceToWellHeadIsLonger = (centerThisCell - centerPreviousCell).lengthSquared() <= (centerThisCell - whStartPos).lengthSquared();
}
// First make sure this cell is not starting a new "display" branch for none MSW's
if ( wellResults->isMultiSegmentWell()
|| !isAutoDetectBranches
|| (prevWellResPoint == whResCell)
|| distanceToWellHeadIsLonger)
{
// Not starting a "display" branch for normal wells
// Calculate the exit of the previous cell, and the entry point into this cell
cvf::Vec3d intoThisCell(centerThisCell); // Use cell center as default for "into" point.
if (prevWellResPoint && prevWellResPoint->isValid())
{
// We have a defined previous point
// Create ray between the previous and this cell
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin(centerPreviousCell);
rayToThisCell.setDirection((centerThisCell - centerPreviousCell).getNormalized());
// Intersect with the current cell to find a better entry point than the cell center
int intersectionCount = cell.firstIntersectionPoint(rayToThisCell, &intoThisCell);
bool isPreviousResPointInsideCurrentCell = (intersectionCount % 2); // Must intersect uneven times to be inside. (1 % 2 = 1)
// If we have a real previous cell, we need to go out of it, before entering this.
// That is: add a CL-point describing where it leaves the previous cell.
if ( prevWellResPoint->isCell())
{
cvf::Vec3d outOfPrevCell(centerPreviousCell);
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
bool intersectionOk = prevCell.firstIntersectionPoint(rayToThisCell, &outOfPrevCell);
//CVF_ASSERT(intersectionOk);
//CVF_ASSERT(intersectionOk);
if ((intoThisCell - outOfPrevCell).lengthSquared() > 1e-3)
{
branchCLCoords.push_back(outOfPrevCell);
branchCellIds.push_back(RigWellResultPoint());
}
}
else if (isPreviousResPointInsideCurrentCell)
{
// Since the previous point actually is inside this cell,
/// use that as the entry point into this cell
intoThisCell = centerPreviousCell;
}
}
branchCLCoords.push_back(intoThisCell);
branchCellIds.push_back(currentWellResPoint);
}
else
{
// Need to start a "display branch" for a Normal Well.
CVF_ASSERT(!wellResults->isMultiSegmentWell());
// This cell is further from the previous cell than from the well head,
// thus we interpret it as a new branch.
// First finish the current branch in the previous cell
//branchCLCoords.push_back(branchCLCoords.back() + 1.5*(centerPreviousCell - branchCLCoords.back()) );
finishPipeCenterLine(pipeBranchesCLCoords, centerPreviousCell);
// Create new display branch
pipeBranchesCLCoords.push_back(std::vector<cvf::Vec3d>());
pipeBranchesCellIds.push_back(std::vector <RigWellResultPoint>());
// Start the new branch by entering the first cell (the wellhead) and intermediate
prevWellResPoint = whResCell;
pipeBranchesCLCoords.back().push_back(whStartPos);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
// Include intermediate
pipeBranchesCLCoords.back().push_back(whIntermediate);
pipeBranchesCellIds.back().push_back(*prevWellResPoint);
// Well now we need to step one back to take this cell again, but in the new branch.
cIdx--;
continue;
}
}
prevWellResPoint = &currentWellResPoint;
}
// For the last cell, add the point 0.5 past the center of that cell
// Remember that prevWellResPoint actually is the last one in this branch.
cvf::Vec3d centerLastCell;
if (prevWellResPoint && prevWellResPoint->isCell())
{
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell(*prevWellResPoint);
centerLastCell = prevCell.center();
finishPipeCenterLine(pipeBranchesCLCoords, centerLastCell);
}
else
{
// Remove the ID that is superfluous since we will not add an ending point
pipeBranchesCellIds.back().pop_back();
}
}
}
CVF_ASSERT(pipeBranchesCellIds.size() == pipeBranchesCLCoords.size());
for (size_t i = 0 ; i < pipeBranchesCellIds.size() ; ++i)
{
CVF_ASSERT(pipeBranchesCellIds[i].size() == pipeBranchesCLCoords[i].size()-1);
}
}
//--------------------------------------------------------------------------------------------------
/// All branches are completed using the point 0.5 past the center of
/// last cell.
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::finishPipeCenterLine(std::vector< std::vector<cvf::Vec3d> > &pipeBranchesCLCoords, const cvf::Vec3d& lastCellCenter)
{
CVF_ASSERT(pipeBranchesCLCoords.size());
CVF_ASSERT(pipeBranchesCLCoords.back().size());
cvf::Vec3d entryPointLastCell = pipeBranchesCLCoords.back().back();
pipeBranchesCLCoords.back().push_back(entryPointLastCell + 1.5*(lastCellCenter - entryPointLastCell) );
}