ResInsight/ApplicationLibCode/GeoMech/GeoMechDataModel/RigFemPartResultCalculatorTimeLapse.cpp
Magne Sjaastad f8c5cf389f
clang-format: Set column width to 140
* Set column width to 140
* Use c++20
* Remove redundant virtual
2023-02-26 10:48:40 +01:00

200 lines
8.9 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2020- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFemPartResultCalculatorTimeLapse.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartResultCalculatorGamma.h"
#include "RigFemPartResultCalculatorNormalized.h"
#include "RigFemPartResultCalculatorStressAnisotropy.h"
#include "RigFemPartResultsCollection.h"
#include "RigFemResultAddress.h"
#include "RigFemScalarResultFrames.h"
#include "cafProgressInfo.h"
#include <QString>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorTimeLapse::RigFemPartResultCalculatorTimeLapse( RigFemPartResultsCollection& collection )
: RigFemPartResultCalculator( collection )
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemPartResultCalculatorTimeLapse::~RigFemPartResultCalculatorTimeLapse()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigFemPartResultCalculatorTimeLapse::isMatching( const RigFemResultAddress& resVarAddr ) const
{
return resVarAddr.isTimeLapse();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultCalculatorTimeLapse::calculate( int partIndex, const RigFemResultAddress& resVarAddr )
{
CVF_ASSERT( resVarAddr.isTimeLapse() );
RigFemPartResultCalculatorStressAnisotropy anisotropyCalculator( *m_resultCollection );
if ( resVarAddr.fieldName == "Gamma" )
{
return calculateGammaTimeLapse( partIndex, resVarAddr );
}
else if ( anisotropyCalculator.isMatching( resVarAddr ) )
{
return anisotropyCalculator.calculateTimeLapse( partIndex, resVarAddr );
}
else
{
return calculateTimeLapse( partIndex, resVarAddr );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultCalculatorTimeLapse::calculateTimeLapse( int partIndex, const RigFemResultAddress& resVarAddr )
{
caf::ProgressInfo stepCountProgress( m_resultCollection->timeStepCount() * 2, "" );
stepCountProgress.setProgressDescription( "Calculating " +
QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) );
stepCountProgress.setNextProgressIncrement( m_resultCollection->timeStepCount() );
RigFemResultAddress resVarNative( resVarAddr.resultPosType,
resVarAddr.fieldName,
resVarAddr.componentName,
RigFemResultAddress::noTimeLapseValue(),
resVarAddr.refKLayerIndex );
resVarNative.normalizedByHydrostaticPressure = resVarAddr.normalizedByHydrostaticPressure;
RigFemScalarResultFrames* srcDataFrames = nullptr;
RigFemScalarResultFrames* dstDataFrames = m_resultCollection->createScalarResult( partIndex, resVarAddr );
// Normalizable result: needs to be normalized before the diff is calculated
if ( resVarAddr.normalizeByHydrostaticPressure() && RigFemPartResultsCollection::isNormalizableResult( resVarAddr ) )
{
RigFemPartResultCalculatorNormalized normalizedCalculator( *m_resultCollection );
srcDataFrames = normalizedCalculator.calculate( partIndex, resVarNative );
}
else
{
srcDataFrames = m_resultCollection->findOrLoadScalarResult( partIndex, resVarNative );
}
stepCountProgress.incrementProgress();
const int timeSteps = srcDataFrames->timeStepCount();
auto [baseStepIdx, baseFrameIdx] = m_resultCollection->stepListIndexToTimeStepAndDataFrameIndex( resVarAddr.timeLapseBaseStepIdx );
if ( baseStepIdx >= timeSteps ) return dstDataFrames;
const std::vector<float>& baseFrameData = srcDataFrames->frameData( baseStepIdx, baseFrameIdx );
if ( baseFrameData.empty() ) return dstDataFrames;
for ( int stepIdx = 0; stepIdx < timeSteps; stepIdx++ )
{
const int frameCount = srcDataFrames->frameCount( stepIdx );
for ( int fIdx = 0; fIdx < frameCount; fIdx++ )
{
const std::vector<float>& srcFrameData = srcDataFrames->frameData( stepIdx, fIdx );
if ( srcFrameData.empty() ) continue; // Create empty results
std::vector<float>& dstFrameData = dstDataFrames->frameData( stepIdx, fIdx );
size_t valCount = srcFrameData.size();
dstFrameData.resize( valCount );
#pragma omp parallel for
for ( long vIdx = 0; vIdx < static_cast<long>( valCount ); ++vIdx )
{
dstFrameData[vIdx] = srcFrameData[vIdx] - baseFrameData[vIdx];
}
}
stepCountProgress.incrementProgress();
}
return dstDataFrames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFemScalarResultFrames* RigFemPartResultCalculatorTimeLapse::calculateGammaTimeLapse( int partIndex, const RigFemResultAddress& resVarAddr )
{
// Gamma time lapse needs to be calculated as ST_dt / POR_dt and not Gamma - Gamma_baseFrame see github
// issue #937
caf::ProgressInfo stepCountProgress( m_resultCollection->timeStepCount() * 3, "" );
stepCountProgress.setProgressDescription( "Calculating " +
QString::fromStdString( resVarAddr.fieldName + ": " + resVarAddr.componentName ) );
stepCountProgress.setNextProgressIncrement( m_resultCollection->timeStepCount() );
RigFemResultAddress totStressCompAddr( resVarAddr.resultPosType, "ST", "", resVarAddr.timeLapseBaseStepIdx );
{
std::string scomp;
std::string gcomp = resVarAddr.componentName;
if ( gcomp == "Gamma1" )
scomp = "S1";
else if ( gcomp == "Gamma2" )
scomp = "S2";
else if ( gcomp == "Gamma3" )
scomp = "S3";
else if ( gcomp == "Gamma11" )
scomp = "S11";
else if ( gcomp == "Gamma22" )
scomp = "S22";
else if ( gcomp == "Gamma33" )
scomp = "S33";
totStressCompAddr.componentName = scomp;
}
RigFemScalarResultFrames* srcDataFrames = m_resultCollection->findOrLoadScalarResult( partIndex, totStressCompAddr );
stepCountProgress.incrementProgress();
stepCountProgress.setNextProgressIncrement( m_resultCollection->timeStepCount() );
RigFemScalarResultFrames* srcPORDataFrames =
m_resultCollection->findOrLoadScalarResult( partIndex,
RigFemResultAddress( RIG_NODAL, "POR-Bar", "", resVarAddr.timeLapseBaseStepIdx ) );
RigFemScalarResultFrames* dstDataFrames = m_resultCollection->createScalarResult( partIndex, resVarAddr );
stepCountProgress.incrementProgress();
RigFemPartResultCalculatorGamma::calculateGammaFromFrames( partIndex,
m_resultCollection->parts(),
srcDataFrames,
srcPORDataFrames,
dstDataFrames,
&stepCountProgress );
if ( resVarAddr.normalizeByHydrostaticPressure() && RigFemPartResultsCollection::isNormalizableResult( resVarAddr ) )
{
RigFemPartResultCalculatorNormalized normalizedCalculator( *m_resultCollection );
dstDataFrames = normalizedCalculator.calculate( partIndex, resVarAddr );
}
return dstDataFrames;
}