ResInsight/ApplicationCode/ModelVisualization/Riv3dWellLogCurveGeometryGenerator.cpp

472 lines
21 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "Riv3dWellLogCurveGeometryGenerator.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RiaCurveDataTools.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "cafLine.h"
#include "cafDisplayCoordTransform.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfBoundingBox.h"
#include "cvfMath.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Riv3dWellLogCurveGeometryGenerator::Riv3dWellLogCurveGeometryGenerator(RimWellPath* wellPath)
: m_wellPath(wellPath)
, m_planeWidth(0.0)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createCurveDrawables(const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
const Rim3dWellLogCurve* rim3dWellLogCurve,
double planeOffsetFromWellPathCenter,
double planeWidth,
const std::vector<cvf::Vec3d>& drawSurfaceVertices,
int currentTimeStep)
{
CVF_ASSERT(rim3dWellLogCurve);
// Make sure all drawables are cleared in case we return early to avoid a
// previous drawable being "stuck" when changing result type.
clearCurvePointsAndGeometry();
float curveUIRange = rim3dWellLogCurve->maxCurveUIValue() - rim3dWellLogCurve->minCurveUIValue();
if (curveUIRange < 1.0e-6f)
{
return;
}
std::vector<double> resultValues;
std::vector<double> resultMds;
if (rim3dWellLogCurve->followAnimationTimeStep())
{
rim3dWellLogCurve->curveValuesAndMdsAtTimeStep(&resultValues, &resultMds, currentTimeStep);
}
else
{
rim3dWellLogCurve->curveValuesAndMds(&resultValues, &resultMds);
}
m_planeWidth = planeWidth;
if (!wellPathGeometry()) return;
if (wellPathGeometry()->m_wellPathPoints.empty()) return;
if (!wellPathClipBoundingBox.isValid()) return;
if (resultValues.empty()) return;
CVF_ASSERT(resultValues.size() == resultMds.size());
RimWellPathCollection* wellPathCollection = nullptr;
m_wellPath->firstAncestorOrThisOfTypeAsserted(wellPathCollection);
cvf::Vec3d clipLocation = wellPathGeometry()->m_wellPathPoints.front();
if (wellPathCollection->wellPathClip)
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
}
clipLocation = displayCoordTransform->transformToDisplayCoord(clipLocation);
std::vector<cvf::Vec3d> wellPathPoints = wellPathGeometry()->m_wellPathPoints;
for (cvf::Vec3d& wellPathPoint : wellPathPoints)
{
wellPathPoint = displayCoordTransform->transformToDisplayCoord(wellPathPoint);
}
std::vector<cvf::Vec3d> wellPathCurveNormals =
RigWellPathGeometryTools::calculateLineSegmentNormals(wellPathPoints, rim3dWellLogCurve->drawPlaneAngle());
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedCurveNormals;
// Iterate from bottom of well path and up to be able to stop at given Z max clipping height
for (auto md = resultMds.rbegin(); md != resultMds.rend(); md++)
{
cvf::Vec3d point = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathPoints, *md);
cvf::Vec3d normal = wellPathGeometry()->interpolatedVectorAlongWellPath(wellPathCurveNormals, *md);
if (point.z() > clipLocation.z()) break;
interpolatedWellPathPoints.push_back(point);
interpolatedCurveNormals.push_back(normal.getNormalized());
}
if (interpolatedWellPathPoints.empty()) return;
// Reverse list, since it was filled in the opposite order
std::reverse(interpolatedWellPathPoints.begin(), interpolatedWellPathPoints.end());
std::reverse(interpolatedCurveNormals.begin(), interpolatedCurveNormals.end());
// The result values for the part of the well which is not clipped off, matching interpolatedWellPathPoints size
m_curveValues = std::vector<double>(resultValues.end() - interpolatedWellPathPoints.size(), resultValues.end());
m_curveMeasuredDepths = std::vector<double>(resultMds.end() - interpolatedWellPathPoints.size(), resultMds.end());
double maxVisibleResult = -std::numeric_limits<double>::max();
double minVisibleResult = std::numeric_limits<double>::max();
double minCurveValue = rim3dWellLogCurve->minCurveUIValue();
double maxCurveValue = rim3dWellLogCurve->maxCurveUIValue();
double curveEpsilon = 1.0e-6;
for (double& result : m_curveValues)
{
if (!RiaCurveDataTools::isValidValue(result, false)) continue;
if ((minCurveValue - result) > curveEpsilon * curveUIRange)
{
result = minCurveValue - curveEpsilon;
}
else if ((result - maxCurveValue) > curveEpsilon * curveUIRange)
{
result = maxCurveValue + curveEpsilon;
}
else
{
maxVisibleResult = std::max(result, maxVisibleResult);
minVisibleResult = std::min(result, minVisibleResult);
}
}
if (minVisibleResult > maxVisibleResult)
{
return;
}
double plotRangeToResultRangeFactor = planeWidth / curveUIRange;
m_curveVertices.reserve(interpolatedWellPathPoints.size());
for (size_t i = 0; i < interpolatedWellPathPoints.size(); i++)
{
double scaledResult = 0;
if (RiaCurveDataTools::isValidValue(m_curveValues[i], false))
{
scaledResult = planeOffsetFromWellPathCenter + (m_curveValues[i] - minCurveValue) * plotRangeToResultRangeFactor;
}
cvf::Vec3d curvePoint(interpolatedWellPathPoints[i] + scaledResult * interpolatedCurveNormals[i]);
m_curveVertices.push_back(curvePoint);
}
m_curveVertices = projectVerticesOntoTriangles(m_curveVertices, drawSurfaceVertices);
createNewVerticesAlongTriangleEdges(drawSurfaceVertices);
{
std::vector<cvf::uint> indices;
indices.reserve(m_curveVertices.size() * 2);
for (size_t i = 0; i < m_curveVertices.size() - 1; ++i)
{
if (RiaCurveDataTools::isValidValue(m_curveValues[i], false) &&
RiaCurveDataTools::isValidValue(m_curveValues[i + 1], false))
{
if (cvf::Math::valueInRange(m_curveValues[i], minCurveValue, maxCurveValue) ||
cvf::Math::valueInRange(m_curveValues[i + 1], minCurveValue, maxCurveValue))
{
indices.push_back(cvf::uint(i));
indices.push_back(cvf::uint(i + 1));
}
}
}
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(indices);
m_curveDrawable = new cvf::DrawableGeo();
indexedUInt->setIndices(indexArray.p());
m_curveDrawable->addPrimitiveSet(indexedUInt.p());
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_curveVertices.size());
for (size_t i = 0; i < m_curveVertices.size(); ++i)
{
(*vertexArray)[i] = cvf::Vec3f(m_curveVertices[i]);
}
m_curveDrawable->setVertexArray(vertexArray.p());
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::clearCurvePointsAndGeometry()
{
m_curveDrawable = nullptr;
m_curveVertices.clear();
m_curveMeasuredDepths.clear();
m_curveValues.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogCurveGeometryGenerator::curveDrawable()
{
return m_curveDrawable;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellPath* Riv3dWellLogCurveGeometryGenerator::wellPathGeometry() const
{
return m_wellPath->wellPathGeometry();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool Riv3dWellLogCurveGeometryGenerator::findClosestPointOnCurve(const cvf::Vec3d& globalIntersection,
cvf::Vec3d* closestPoint,
double* measuredDepthAtPoint,
double* valueAtClosestPoint) const
{
double closestDistance = m_planeWidth * 0.1;
*closestPoint = cvf::Vec3d::UNDEFINED;
*measuredDepthAtPoint = cvf::UNDEFINED_DOUBLE;
*valueAtClosestPoint = cvf::UNDEFINED_DOUBLE;
if (m_curveVertices.size() < 2u) false;
CVF_ASSERT(m_curveVertices.size() == m_curveValues.size());
for (size_t i = 1; i < m_curveVertices.size(); ++i)
{
bool validCurveSegment = RiaCurveDataTools::isValidValue(m_curveValues[i], false) &&
RiaCurveDataTools::isValidValue(m_curveValues[i - 1], false);
if (validCurveSegment)
{
cvf::Vec3d a = m_curveVertices[i - 1];
cvf::Vec3d b = m_curveVertices[i];
cvf::Vec3d ap = globalIntersection - a;
cvf::Vec3d ab = b - a;
// Projected point is clamped to one of the end points of the segment.
double distanceToProjectedPointAlongAB = ap * ab / (ab * ab);
double clampedDistance = cvf::Math::clamp(distanceToProjectedPointAlongAB, 0.0, 1.0);
cvf::Vec3d projectionOfGlobalIntersection = a + clampedDistance * ab;
double distance = (projectionOfGlobalIntersection - globalIntersection).length();
if (distance < closestDistance)
{
*closestPoint = cvf::Vec3d(projectionOfGlobalIntersection);
closestDistance = distance;
*measuredDepthAtPoint =
m_curveMeasuredDepths[i - 1] * (1.0 - clampedDistance) + m_curveMeasuredDepths[i] * clampedDistance;
*valueAtClosestPoint = m_curveValues[i - 1] * (1.0 - clampedDistance) + m_curveValues[i] * clampedDistance;
}
}
}
if (closestPoint->isUndefined()) return false;
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createNewVerticesAlongTriangleEdges(const std::vector<cvf::Vec3d>& drawSurfaceVertices)
{
std::vector<cvf::Vec3d> expandedCurveVertices;
std::vector<double> expandedMeasuredDepths;
std::vector<double> expandedValues;
size_t estimatedNumberOfPoints = m_curveVertices.size() + drawSurfaceVertices.size();
expandedCurveVertices.reserve(estimatedNumberOfPoints);
expandedMeasuredDepths.reserve(estimatedNumberOfPoints);
expandedValues.reserve(estimatedNumberOfPoints);
for (size_t i = 0; i < m_curveVertices.size() - 1; i += 2)
{
if (RiaCurveDataTools::isValidValue(m_curveValues[i], false) &&
RiaCurveDataTools::isValidValue(m_curveValues[i + 1], false))
{
cvf::Vec3d lastVertex = m_curveVertices[i];
cvf::Vec3d fullSegmentVector = m_curveVertices[i + 1] - m_curveVertices[i];
std::vector<cvf::Vec3d> extraVertices;
createNewVerticesAlongSegment(m_curveVertices[i],
m_curveVertices[i + 1],
drawSurfaceVertices,
&extraVertices);
for (const cvf::Vec3d& extraVertex : extraVertices)
{
cvf::Vec3d newSegmentVector = extraVertex - lastVertex;
// Scalar projection (a * b / |b|) divided by full segment length to become (a * b / |b|^2)
double dotProduct = newSegmentVector * fullSegmentVector;
double fractionAlongFullSegment = dotProduct / fullSegmentVector.lengthSquared();
double measuredDepth = m_curveMeasuredDepths[i] * (1 - fractionAlongFullSegment) +
m_curveMeasuredDepths[i + 1] * fractionAlongFullSegment;
double valueAtPoint =
m_curveValues[i] * (1 - fractionAlongFullSegment) + m_curveValues[i + 1] * fractionAlongFullSegment;
expandedCurveVertices.push_back(extraVertex);
expandedMeasuredDepths.push_back(measuredDepth);
expandedValues.push_back(valueAtPoint);
lastVertex = extraVertex;
}
}
else
{
// Add the invalid points and values.
expandedCurveVertices.push_back(m_curveVertices[i]);
expandedMeasuredDepths.push_back(m_curveMeasuredDepths[i]);
expandedValues.push_back(m_curveValues[i]);
}
}
m_curveVertices.swap(expandedCurveVertices);
m_curveMeasuredDepths.swap(expandedMeasuredDepths);
m_curveValues.swap(expandedValues);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogCurveGeometryGenerator::createNewVerticesAlongSegment(const cvf::Vec3d& ptStart,
const cvf::Vec3d& ptEnd,
const std::vector<cvf::Vec3d>& drawSurfaceVertices,
std::vector<cvf::Vec3d>* extraVertices)
{
cvf::Vec3d fullSegmentVector = ptEnd - ptStart;
extraVertices->push_back(ptStart);
// Find segments that intersects the triangle edges
for (size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1)
{
caf::Line<double> triangleEdge1 = caf::Line<double>(drawSurfaceVertices[j], drawSurfaceVertices[j + 1]);
caf::Line<double> triangleEdge2 = caf::Line<double>(drawSurfaceVertices[j + 2], drawSurfaceVertices[j + 1]);
cvf::Vec3d triangleNormal =
(triangleEdge1.vector().getNormalized() ^ triangleEdge2.vector().getNormalized()).getNormalized();
cvf::Vec3d currentSubSegment = ptEnd - extraVertices->back();
cvf::Vec3d projectedSegmentVector = currentSubSegment - (currentSubSegment * triangleNormal) * triangleNormal;
caf::Line<double> projectedCurveLine(extraVertices->back(), extraVertices->back() + projectedSegmentVector);
// Only attempt to find intersections with the first edge. The other edge is handled with the next triangle.
bool withinSegments = false;
caf::Line<double> connectingLine = projectedCurveLine.findLineBetweenNearestPoints(triangleEdge1, &withinSegments);
cvf::Vec3d newVertex = connectingLine.end();
cvf::Vec3d newSegmentVector = newVertex - extraVertices->back();
if (withinSegments && newSegmentVector.lengthSquared() < currentSubSegment.lengthSquared())
{
extraVertices->push_back(newVertex);
}
}
extraVertices->push_back(ptEnd);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d>
Riv3dWellLogCurveGeometryGenerator::projectVerticesOntoTriangles(const std::vector<cvf::Vec3d>& originalVertices,
const std::vector<cvf::Vec3d>& drawSurfaceVertices)
{
std::vector<cvf::Vec3d> projectedVertices;
projectedVertices.reserve(originalVertices.size());
for (size_t i = 0; i < originalVertices.size(); ++i)
{
// Sort projections onto triangle by the distance of the projection.
std::map<double, cvf::Vec3d> projectionsInsideTriangle;
for (size_t j = 0; j < drawSurfaceVertices.size() - 2; j += 1)
{
cvf::Vec3d triangleVertex1, triangleVertex2, triangleVertex3;
if (j % 2 == 0)
{
triangleVertex1 = drawSurfaceVertices[j];
triangleVertex2 = drawSurfaceVertices[j + 1];
triangleVertex3 = drawSurfaceVertices[j + 2];
}
else
{
triangleVertex1 = drawSurfaceVertices[j];
triangleVertex2 = drawSurfaceVertices[j + 2];
triangleVertex3 = drawSurfaceVertices[j + 1];
}
bool wasInsideTriangle = false;
cvf::Vec3d projectedPoint = projectPointOntoTriangle(
originalVertices[i], triangleVertex1, triangleVertex2, triangleVertex3, &wasInsideTriangle);
if (wasInsideTriangle)
{
projectionsInsideTriangle.insert(
std::make_pair((projectedPoint - originalVertices[i]).lengthSquared(), projectedPoint));
}
}
// Take the closest projection
if (!projectionsInsideTriangle.empty())
{
projectedVertices.push_back(projectionsInsideTriangle.begin()->second);
}
else
{
projectedVertices.push_back(originalVertices[i]);
}
}
return projectedVertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d Riv3dWellLogCurveGeometryGenerator::projectPointOntoTriangle(const cvf::Vec3d& point,
const cvf::Vec3d& triangleVertex1,
const cvf::Vec3d& triangleVertex2,
const cvf::Vec3d& triangleVertex3,
bool* wasInsideTriangle)
{
*wasInsideTriangle = false;
cvf::Vec3d e1 = triangleVertex2 - triangleVertex1;
cvf::Vec3d e2 = triangleVertex3 - triangleVertex1;
cvf::Vec3d n = (e1.getNormalized() ^ e2.getNormalized()).getNormalized();
// Project vertex onto triangle plane
cvf::Vec3d av = point - triangleVertex1;
cvf::Vec3d projectedAv = av - (av * n) * n;
cvf::Vec3d projectedPoint = projectedAv + triangleVertex1;
// Calculate barycentric coordinates
double areaABC = n * (e1 ^ e2);
double areaPBC = n * ((triangleVertex2 - projectedPoint) ^ (triangleVertex3 - projectedPoint));
double areaPCA = n * ((triangleVertex3 - projectedPoint) ^ (triangleVertex1 - projectedPoint));
double u = areaPBC / areaABC;
double v = areaPCA / areaABC;
double w = 1.0 - u - v;
if (u >= -1.0e-6 && v >= -1.0e-6 && w >= -1.0e-6)
{
*wasInsideTriangle = true;
// Clamp to ensure it is inside the triangle
u = cvf::Math::clamp(u, 0.0, 1.0);
v = cvf::Math::clamp(v, 0.0, 1.0);
w = cvf::Math::clamp(w, 0.0, 1.0);
projectedPoint = triangleVertex1 * u + triangleVertex2 * v + triangleVertex3 * w;
}
return projectedPoint;
}