ResInsight/ApplicationCode/ModelVisualization/Riv3dWellLogDrawSurfaceGenerator.cpp

314 lines
13 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "Riv3dWellLogDrawSurfaceGenerator.h"
#include "RimWellPath.h"
#include "RimWellPathCollection.h"
#include "RigWellPath.h"
#include "RigWellPathGeometryTools.h"
#include "cafDisplayCoordTransform.h"
#include "cvfObject.h"
#include "cvfPrimitiveSetIndexedUInt.h"
#include "cvfBoundingBox.h"
#include "cvfGeometryBuilderTriangles.h"
#include "cvfArrowGenerator.h"
#include <algorithm>
#include <map>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
Riv3dWellLogDrawSurfaceGenerator::Riv3dWellLogDrawSurfaceGenerator(RimWellPath* wellPath)
: m_wellPath(wellPath)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool
Riv3dWellLogDrawSurfaceGenerator::createDrawSurface(const caf::DisplayCoordTransform* displayCoordTransform,
const cvf::BoundingBox& wellPathClipBoundingBox,
double planeAngle,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize)
{
CVF_ASSERT(samplingIntervalSize > 0);
clearGeometry();
if (!wellPathGeometry() || wellPathGeometry()->m_measuredDepths.empty())
{
return false;
}
if (!wellPathClipBoundingBox.isValid())
{
return false;
}
RimWellPathCollection* wellPathCollection = nullptr;
m_wellPath->firstAncestorOrThisOfTypeAsserted(wellPathCollection);
std::vector<cvf::Vec3d> wellPathPoints = wellPathGeometry()->m_wellPathPoints;
if (wellPathPoints.size() < (size_t)2)
{
// Need at least two well path points to create a valid path.
return false;
}
for (cvf::Vec3d& wellPathPoint : wellPathPoints)
{
wellPathPoint = displayCoordTransform->transformToDisplayCoord(wellPathPoint);
}
std::vector<cvf::Vec3d> wellPathSegmentNormals =
RigWellPathGeometryTools::calculateLineSegmentNormals(wellPathPoints, planeAngle);
size_t indexToFirstVisibleSegment = 0u;
if (wellPathCollection->wellPathClip)
{
double clipZDistance = wellPathCollection->wellPathClipZDistance;
cvf::Vec3d clipLocation = wellPathClipBoundingBox.max() + clipZDistance * cvf::Vec3d(0, 0, 1);
clipLocation = displayCoordTransform->transformToDisplayCoord(clipLocation);
double horizontalLengthAlongWellToClipPoint;
wellPathPoints = RigWellPath::clipPolylineStartAboveZ(
wellPathPoints, clipLocation.z(), &horizontalLengthAlongWellToClipPoint, &indexToFirstVisibleSegment);
}
// Create curve normal vectors using the unclipped well path points and normals.
createCurveNormalVectors(displayCoordTransform, indexToFirstVisibleSegment, planeOffsetFromWellPathCenter, planeWidth, samplingIntervalSize, wellPathSegmentNormals);
// Note that normals are calculated on the full non-clipped well path. So we need to clip the start here.
wellPathSegmentNormals.erase(wellPathSegmentNormals.begin(), wellPathSegmentNormals.end() - wellPathPoints.size());
if (wellPathPoints.size() < (size_t)2)
{
// Need at least two well path points to create a valid path.
return false;
}
m_vertices.reserve(wellPathPoints.size() * 2);
for (size_t i = 0; i < wellPathPoints.size(); i++)
{
m_vertices.push_back(wellPathPoints[i] + wellPathSegmentNormals[i] * (planeOffsetFromWellPathCenter - 0.025*planeWidth));
m_vertices.push_back(wellPathPoints[i] + wellPathSegmentNormals[i] * (planeOffsetFromWellPathCenter + 1.025*planeWidth));
}
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(m_vertices.size());
for (size_t i = 0; i < m_vertices.size(); ++i)
{
(*vertexArray)[i] = cvf::Vec3f(m_vertices[i]);
}
createBackground(vertexArray.p());
createBorder(vertexArray.p());
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::clearGeometry()
{
m_background = nullptr;
m_border = nullptr;
m_curveNormalVectors = nullptr;
m_vertices.clear();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogDrawSurfaceGenerator::background() const
{
return m_background;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> Riv3dWellLogDrawSurfaceGenerator::border() const
{
return m_border;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableVectors> Riv3dWellLogDrawSurfaceGenerator::curveNormalVectors() const
{
return m_curveNormalVectors;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<cvf::Vec3d>& Riv3dWellLogDrawSurfaceGenerator::vertices() const
{
return m_vertices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createCurveNormalVectors(const caf::DisplayCoordTransform* displayCoordTransform,
size_t clipStartIndex,
double planeOffsetFromWellPathCenter,
double planeWidth,
double samplingIntervalSize,
const std::vector<cvf::Vec3d>& segmentNormals)
{
std::vector<cvf::Vec3d> interpolatedWellPathPoints;
std::vector<cvf::Vec3d> interpolatedWellPathNormals;
double firstMd = wellPathGeometry()->m_measuredDepths.at(clipStartIndex);
double lastMd = wellPathGeometry()->m_measuredDepths.back();
double md = lastMd;
while (md >= firstMd)
{
cvf::Vec3d point = wellPathGeometry()->interpolatedPointAlongWellPath(md);
point = displayCoordTransform->transformToDisplayCoord(point);
cvf::Vec3d curveNormal = wellPathGeometry()->interpolatedVectorAlongWellPath(segmentNormals, md);
interpolatedWellPathPoints.push_back(point);
interpolatedWellPathNormals.push_back(curveNormal.getNormalized());
md -= samplingIntervalSize;
}
std::vector<cvf::Vec3f> arrowVertices;
std::vector<cvf::Vec3f> arrowVectors;
arrowVertices.reserve(interpolatedWellPathPoints.size());
arrowVectors.reserve(interpolatedWellPathPoints.size());
double shaftRelativeRadius = 0.0125f;
double arrowHeadRelativeRadius = shaftRelativeRadius * 3;
double arrowHeadRelativeLength = arrowHeadRelativeRadius * 3;
double totalArrowScaling = 1.0 / (1.0 - arrowHeadRelativeLength);
// Normal lines. Start from one to avoid drawing at surface edge.
for (size_t i = 1; i < interpolatedWellPathNormals.size(); i++)
{
arrowVertices.push_back(cvf::Vec3f(interpolatedWellPathPoints[i] + interpolatedWellPathNormals[i] * planeOffsetFromWellPathCenter));
arrowVectors.push_back(cvf::Vec3f(interpolatedWellPathNormals[i] * planeWidth * totalArrowScaling));
}
if (arrowVertices.empty() || arrowVectors.empty())
{
return;
}
m_curveNormalVectors = new cvf::DrawableVectors();
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray(arrowVertices);
cvf::ref<cvf::Vec3fArray> vectorArray = new cvf::Vec3fArray(arrowVectors);
// Create the arrow glyph for the vector drawer
cvf::GeometryBuilderTriangles arrowBuilder;
cvf::ArrowGenerator gen;
gen.setShaftRelativeRadius(shaftRelativeRadius);
gen.setHeadRelativeRadius(arrowHeadRelativeRadius);
gen.setHeadRelativeLength(arrowHeadRelativeLength);
gen.setNumSlices(4);
gen.generate(&arrowBuilder);
m_curveNormalVectors->setGlyph(arrowBuilder.trianglesUShort().p(), arrowBuilder.vertices().p());
m_curveNormalVectors->setVectors(vertexArray.p(), vectorArray.p());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createBackground(cvf::Vec3fArray* vertexArray)
{
std::vector<cvf::uint> backgroundIndices;
backgroundIndices.reserve(vertexArray->size());
for (size_t i = 0; i < vertexArray->size(); ++i)
{
backgroundIndices.push_back((cvf::uint) (i));
}
// Background specific
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_TRIANGLE_STRIP);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(backgroundIndices);
indexedUInt->setIndices(indexArray.p());
m_background = new cvf::DrawableGeo();
m_background->addPrimitiveSet(indexedUInt.p());
m_background->setVertexArray(vertexArray);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void Riv3dWellLogDrawSurfaceGenerator::createBorder(cvf::Vec3fArray* vertexArray)
{
std::vector<cvf::uint> borderIndices;
borderIndices.reserve(m_vertices.size());
int secondLastEvenVertex = (int)vertexArray->size() - 4;
// Border close to the well. All even indices.
for (int i = 0; i <= secondLastEvenVertex; i += 2)
{
borderIndices.push_back((cvf::uint) i);
borderIndices.push_back((cvf::uint) i + 2);
}
// Connect to border away from well
borderIndices.push_back((cvf::uint) (vertexArray->size() - 2));
borderIndices.push_back((cvf::uint) (vertexArray->size() - 1));
int secondOddVertex = 3;
int lastOddVertex = (int)vertexArray->size() - 1;
// Border away from from well are odd indices in reverse order to create a closed surface.
for (int i = lastOddVertex; i >= secondOddVertex; i -= 2)
{
borderIndices.push_back((cvf::uint) i);
borderIndices.push_back((cvf::uint) i - 2);
}
// Close border
borderIndices.push_back(1u);
borderIndices.push_back(0u);
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUInt = new cvf::PrimitiveSetIndexedUInt(cvf::PrimitiveType::PT_LINES);
cvf::ref<cvf::UIntArray> indexArray = new cvf::UIntArray(borderIndices);
indexedUInt->setIndices(indexArray.p());
m_border = new cvf::DrawableGeo();
m_border->addPrimitiveSet(indexedUInt.p());
m_border->setVertexArray(vertexArray);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellPath* Riv3dWellLogDrawSurfaceGenerator::wellPathGeometry() const
{
return m_wellPath->wellPathGeometry();
}