ResInsight/Fwk/VizFwk/LibStructGrid/cvfStructGridIsosurface.cpp
sigurdp bbebebadd5 Added complete VizFwk
Added the complete VizFwk from the ResInsight branch in Perforce as of
changelist 190.
2013-11-01 08:49:42 +01:00

975 lines
48 KiB
C++

//##################################################################################################
//
// Custom Visualization Core library
// Copyright (C) 2011-2013 Ceetron AS
//
// This library may be used under the terms of either the GNU General Public License or
// the GNU Lesser General Public License as follows:
//
// GNU General Public License Usage
// This library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <<http://www.gnu.org/licenses/gpl.html>>
// for more details.
//
// GNU Lesser General Public License Usage
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU Lesser General Public License at <<http://www.gnu.org/licenses/lgpl-2.1.html>>
// for more details.
//
//##################################################################################################
#include "cvfBase.h"
#include "cvfStructGridIsosurface.h"
#include "cvfGeometryBuilderDrawableGeo.h"
#include "cvfPrimitiveSetIndexedUShort.h"
#include "cvfDebugTimer.h"
#include "cvfPlane.h"
#include "cvfScalarMapper.h"
#include "cvfRectilinearGrid.h"
#include <map>
namespace cvf {
//==================================================================================================
///
/// \class cvf::StructGridIsosurface
/// \ingroup StructGrid
///
///
///
//==================================================================================================
// Based on description and implementation from Paul Bourke:
// http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
const uint StructGridIsosurface::sm_edgeTable[256] =
{
0x0 , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc ,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0
};
const int StructGridIsosurface::sm_triTable[256][16] =
{
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1},
{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1},
{1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1},
{4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1},
{9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1},
{2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1},
{10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1},
{5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1},
{5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1},
{8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1},
{2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1},
{7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1},
{11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1},
{5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1},
{11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1},
{11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1},
{9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1},
{6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1},
{6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1},
{6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1},
{8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1},
{7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1},
{3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1},
{5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1},
{0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1},
{9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1},
{8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1},
{5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1},
{0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1},
{6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1},
{10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1},
{10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1},
{0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1},
{3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1},
{6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1},
{9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1},
{8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1},
{3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1},
{6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1},
{10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1},
{10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1},
{7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1},
{7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1},
{2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1},
{1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1},
{11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1},
{8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1},
{0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1},
{7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1},
{7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1},
{1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1},
{10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1},
{0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1},
{7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1},
{6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1},
{9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1},
{6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1},
{4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1},
{10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1},
{8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1},
{1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1},
{8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1},
{10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1},
{4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1},
{10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1},
{9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1},
{6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1},
{7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1},
{3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1},
{7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1},
{3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1},
{6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1},
{9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1},
{1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1},
{4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1},
{7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1},
{6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1},
{0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1},
{6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1},
{0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1},
{11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1},
{6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1},
{5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1},
{9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1},
{1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1},
{1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1},
{10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1},
{0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1},
{5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1},
{10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1},
{11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1},
{9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1},
{7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1},
{2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1},
{9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1},
{9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1},
{1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1},
{9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1},
{9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1},
{0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1},
{10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1},
{2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1},
{0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1},
{0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1},
{9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1},
{5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1},
{3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1},
{5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1},
{0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1},
{9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1},
{1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1},
{3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1},
{4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1},
{9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1},
{11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1},
{11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1},
{2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1},
{9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1},
{3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1},
{1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1},
{4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1},
{4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1},
{0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1},
{3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1},
{3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1},
{0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1},
{9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1},
{1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
};
//--------------------------------------------------------------------------------------------------
/// Constructor
//--------------------------------------------------------------------------------------------------
StructGridIsosurface::StructGridIsosurface(const RectilinearGrid* grid)
: m_grid(grid),
m_scalarSetIndex(0),
m_isoValue(0),
m_mapScalarSetIndex(UNDEFINED_UINT),
m_scalarMapper(NULL)
{
CVF_ASSERT(grid);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
StructGridIsosurface::~StructGridIsosurface()
{
}
//--------------------------------------------------------------------------------------------------
/// Set index of scalar set that should be used to generate the isosurface
///
/// \param scalarSetIndex Index of the scalar set. Must be a valid index. The default index is 0.
//--------------------------------------------------------------------------------------------------
void StructGridIsosurface::setScalarSetIndex(uint scalarSetIndex)
{
CVF_ASSERT(m_grid.notNull());
CVF_ASSERT(scalarSetIndex < m_grid->scalarSetCount());
m_scalarSetIndex = scalarSetIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void StructGridIsosurface::setIsoValue(double value)
{
m_isoValue = value;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void StructGridIsosurface::setMapScalar(uint scalarSetIndex, const ScalarMapper* mapper)
{
CVF_ASSERT(scalarSetIndex < m_grid->scalarSetCount());
CVF_ASSERT(mapper);
m_mapScalarSetIndex = scalarSetIndex;
m_scalarMapper = mapper;
}
//--------------------------------------------------------------------------------------------------
/// Generate isosurface geometry based on grid point scalars (cell corner)
///
/// \return Reference to created DrawableGeo object. Returns NULL if no isosurface was generated.
/// If a scalar mapper is defined, texture coords are generated based on scalar field used
/// to map onto the isosurface
///
//--------------------------------------------------------------------------------------------------
ref<DrawableGeo> StructGridIsosurface::generateSurface() const
{
DebugTimer tim("StructGridIsosurface::generateSurface()", DebugTimer::DISABLED);
uint cellCountI = m_grid->cellCountI();
uint cellCountJ = m_grid->cellCountJ();
uint cellCountK = m_grid->cellCountK();
std::vector<Vec3f> isoVertices;
std::vector<double> isoVertexScalars;
std::vector<uint> isoIndices;
bool useTextureMapping = mapScalar();
// Maps from edge IDs in original grid to vertex indices in the generated isosurface
std::map<size_t, size_t> edgeIdToIsoVertexIdxMap;
// The indexing conventions for vertices and
// edges used in the algorithm:
// edg verts
// 4-------------5 *------4------* 0 0 - 1
// /| /| /| /| 1 1 - 2
// / | / | 7/ | 5/ | 2 2 - 3
// / | / | |z / 8 / 9 3 3 - 0
// 7-------------6 | | /y *------6------* | 4 4 - 5
// | | | | |/ | | | | 5 5 - 6
// | 0---------|---1 *---x | *------0--|---* 6 6 - 7
// | / | / 11 / 10 / 7 7 - 4
// | / | / | /3 | /1 8 0 - 4
// |/ |/ |/ |/ 9 1 - 5
// 3-------------2 *------2------* 10 2 - 6
// vertex indices edge indices 11 3 - 7
//
GridCell cell;
uint k;
for (k = 0; k < cellCountK; k++)
{
uint j;
for (j = 0; j < cellCountJ; j++)
{
uint i;
for (i = 0; i < cellCountI; i++)
{
// Corner scalar values
cell.val[0] = m_grid->gridPointScalar(m_scalarSetIndex, i, j + 1, k);
cell.val[1] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j + 1, k);
cell.val[2] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j, k);
cell.val[3] = m_grid->gridPointScalar(m_scalarSetIndex, i, j, k);
cell.val[4] = m_grid->gridPointScalar(m_scalarSetIndex, i, j + 1, k + 1);
cell.val[5] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j + 1, k + 1);
cell.val[6] = m_grid->gridPointScalar(m_scalarSetIndex, i + 1, j, k + 1);
cell.val[7] = m_grid->gridPointScalar(m_scalarSetIndex, i, j, k + 1);
// Inexpensive optimization
// Check if iso value intersects this cell before proceeding
int aboveCount = 0;
int belowCount = 0;
int n;
for (n = 0; n < 8; n++)
{
if (cell.val[n] < m_isoValue) belowCount++;
else if (cell.val[n] > m_isoValue) aboveCount++;
}
if (aboveCount == 8 || belowCount == 8)
{
continue;
}
if (useTextureMapping)
{
cell.mapVal[0] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j + 1, k);
cell.mapVal[1] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j + 1, k);
cell.mapVal[2] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j, k);
cell.mapVal[3] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j, k);
cell.mapVal[4] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j + 1, k + 1);
cell.mapVal[5] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j + 1, k + 1);
cell.mapVal[6] = m_grid->gridPointScalar(m_mapScalarSetIndex, i + 1, j, k + 1);
cell.mapVal[7] = m_grid->gridPointScalar(m_mapScalarSetIndex, i, j, k + 1);
}
// Corner coordinates
cell.p[0] = m_grid->gridPointCoordinate(i, j + 1, k);
cell.p[1] = m_grid->gridPointCoordinate(i + 1, j + 1, k);
cell.p[2] = m_grid->gridPointCoordinate(i + 1, j, k);
cell.p[3] = m_grid->gridPointCoordinate(i, j, k);
cell.p[4] = m_grid->gridPointCoordinate(i, j + 1, k + 1);
cell.p[5] = m_grid->gridPointCoordinate(i + 1, j + 1, k + 1);
cell.p[6] = m_grid->gridPointCoordinate(i + 1, j, k + 1);
cell.p[7] = m_grid->gridPointCoordinate(i, j, k + 1);
// Edged IDs
cell.eid[ 0] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k);
cell.eid[ 1] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 1;
cell.eid[ 2] = 3*m_grid->gridPointIndexFromIJK(i, j, k);
cell.eid[ 3] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 1;
cell.eid[ 4] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k + 1);
cell.eid[ 5] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k + 1) + 1;
cell.eid[ 6] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1);
cell.eid[ 7] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1) + 1;
cell.eid[ 8] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k) + 2;
cell.eid[ 9] = 3*m_grid->gridPointIndexFromIJK(i + 1, j + 1, k) + 2;
cell.eid[10] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 2;
cell.eid[11] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 2;
Triangle triangles[5];
int numTriangles = polygonise(m_isoValue, cell, triangles, useTextureMapping);
for (n = 0; n < numTriangles; n++)
{
int m;
for (m = 0; m < 3; m++)
{
size_t vertexIdx = 0;
size_t sourceEdgeId = triangles[n].peid[m];
std::map<size_t,size_t>::iterator it = edgeIdToIsoVertexIdxMap.find(sourceEdgeId);
if (it == edgeIdToIsoVertexIdxMap.end())
{
Vec3f v(triangles[n].p[m]);
isoVertices.push_back(v);
if (useTextureMapping)
{
isoVertexScalars.push_back(triangles[n].scalars[m]);
}
vertexIdx = isoVertices.size() - 1;
edgeIdToIsoVertexIdxMap[sourceEdgeId] = vertexIdx;
}
else
{
vertexIdx = it->second;
}
isoIndices.push_back(static_cast<uint>(vertexIdx));
}
}
}
}
}
tim.reportTime("Time generating iso");
//Trace::show("Vertices:%d Conns:%d Tris:%d", isoVertices.size(), isoIndices.size(), isoIndices.size()/3);
if (isoVertices.size() > 0 && isoIndices.size() > 0)
{
GeometryBuilderDrawableGeo builder;
builder.addVertices(Vec3fArray(isoVertices));
builder.addTriangles(UIntArray(isoIndices));
ref<cvf::DrawableGeo> geo = builder.drawableGeo();
if (useTextureMapping)
{
ref<Color3ubArray> vertexColors = new Color3ubArray;
ref<Vec2fArray> textureCoords = new Vec2fArray;
vertexColors->reserve(isoVertices.size());
textureCoords->reserve(isoVertices.size());
size_t i;
for (i = 0; i < isoVertices.size(); i++)
{
Color3ub clr = m_scalarMapper->mapToColor(isoVertexScalars[i]);
vertexColors->add(clr);
Vec2f texCoord = m_scalarMapper->mapToTextureCoord(isoVertexScalars[i]);
textureCoords->add(texCoord);
}
geo->setColorArray(vertexColors.p());
geo->setTextureCoordArray(textureCoords.p());
}
return geo;
}
else
{
return NULL;
}
}
//--------------------------------------------------------------------------------------------------
/// Generate isosurface geometry from current configuration
///
/// \return Reference to created DrawableGeo object. Returns NULL if no isosurface was generated
///
/// \remarks Currently, the isosurface is generated only from cell center scalar values.
/// \todo Must implement special handling of the outer edges of the grid. Currently half of the
/// outer edge cells is ignored in the isosurface computation.
//--------------------------------------------------------------------------------------------------
ref<DrawableGeo> StructGridIsosurface::generateSurfaceCellCenterBased() const
{
//DebugTimer tim;
uint cellCountI = m_grid->cellCountI();
uint cellCountJ = m_grid->cellCountJ();
uint cellCountK = m_grid->cellCountK();
std::vector<Vec3f> isoVertices;
std::vector<uint> isoIndices;
// Maps from edge IDs in original grid to vertex indices in the generated isosurface
std::map<size_t, size_t> edgeIdToIsoVertexIdxMap;
// The indexing conventions for vertices and
// edges used in the algorithm:
// edg verts
// 4-------------5 *------4------* 0 0 - 1
// /| /| /| /| 1 1 - 2
// / | / | 7/ | 5/ | 2 2 - 3
// / | / | |z / 8 / 9 3 3 - 0
// 7-------------6 | | /y *------6------* | 4 4 - 5
// | | | | |/ | | | | 5 5 - 6
// | 0---------|---1 *---x | *------0--|---* 6 6 - 7
// | / | / 11 / 10 / 7 7 - 4
// | / | / | /3 | /1 8 0 - 4
// |/ |/ |/ |/ 9 1 - 5
// 3-------------2 *------2------* 10 2 - 6
// vertex indices edge indices 11 3 - 7
//
GridCell cell;
const DoubleArray* scalarSet = m_grid->scalarSet(m_scalarSetIndex);
CVF_ASSERT(scalarSet);
uint k;
for (k = 0; k < cellCountK - 1; k++)
{
uint j;
for (j = 0; j < cellCountJ - 1; j++)
{
uint i;
for (i = 0; i < cellCountI - 1; i++)
{
size_t cellIndex0 = m_grid->cellIndexFromIJK(i, j + 1, k);
size_t cellIndex1 = m_grid->cellIndexFromIJK(i + 1, j + 1, k);
size_t cellIndex2 = m_grid->cellIndexFromIJK(i + 1, j, k);
size_t cellIndex3 = m_grid->cellIndexFromIJK(i, j, k);
size_t cellIndex4 = m_grid->cellIndexFromIJK(i, j + 1, k + 1);
size_t cellIndex5 = m_grid->cellIndexFromIJK(i + 1, j + 1, k + 1);
size_t cellIndex6 = m_grid->cellIndexFromIJK(i + 1, j, k + 1);
size_t cellIndex7 = m_grid->cellIndexFromIJK(i, j, k + 1);
// Corner scalar values
cell.val[0] = scalarSet->get(cellIndex0);
cell.val[1] = scalarSet->get(cellIndex1);
cell.val[2] = scalarSet->get(cellIndex2);
cell.val[3] = scalarSet->get(cellIndex3);
cell.val[4] = scalarSet->get(cellIndex4);
cell.val[5] = scalarSet->get(cellIndex5);
cell.val[6] = scalarSet->get(cellIndex6);
cell.val[7] = scalarSet->get(cellIndex7);
// Inexpensive optimization
// Check if iso value intersects this cell before proceeding
int aboveCount = 0;
int belowCount = 0;
int n;
for (n = 0; n < 8; n++)
{
if (cell.val[n] < m_isoValue) belowCount++;
else if (cell.val[n] > m_isoValue) aboveCount++;
}
if (aboveCount == 8 || belowCount == 8)
{
continue;
}
// Corner coordinates
cell.p[0] = m_grid->cellCentroid(cellIndex0);
cell.p[1] = m_grid->cellCentroid(cellIndex1);
cell.p[2] = m_grid->cellCentroid(cellIndex2);
cell.p[3] = m_grid->cellCentroid(cellIndex3);
cell.p[4] = m_grid->cellCentroid(cellIndex4);
cell.p[5] = m_grid->cellCentroid(cellIndex5);
cell.p[6] = m_grid->cellCentroid(cellIndex6);
cell.p[7] = m_grid->cellCentroid(cellIndex7);
// Edged IDs
cell.eid[ 0] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k);
cell.eid[ 1] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 1;
cell.eid[ 2] = 3*m_grid->gridPointIndexFromIJK(i, j, k);
cell.eid[ 3] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 1;
cell.eid[ 4] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k + 1);
cell.eid[ 5] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k + 1) + 1;
cell.eid[ 6] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1);
cell.eid[ 7] = 3*m_grid->gridPointIndexFromIJK(i, j, k + 1) + 1;
cell.eid[ 8] = 3*m_grid->gridPointIndexFromIJK(i, j + 1, k) + 2;
cell.eid[ 9] = 3*m_grid->gridPointIndexFromIJK(i + 1, j + 1, k) + 2;
cell.eid[10] = 3*m_grid->gridPointIndexFromIJK(i + 1, j, k) + 2;
cell.eid[11] = 3*m_grid->gridPointIndexFromIJK(i, j, k) + 2;
Triangle triangles[5];
int numTriangles = polygonise(m_isoValue, cell, triangles, false);
for (n = 0; n < numTriangles; n++)
{
int m;
for (m = 0; m < 3; m++)
{
size_t vertexIdx = 0;
size_t sourceEdgeId = triangles[n].peid[m];
std::map<size_t,size_t>::iterator it = edgeIdToIsoVertexIdxMap.find(sourceEdgeId);
if (it == edgeIdToIsoVertexIdxMap.end())
{
Vec3f v(triangles[n].p[m]);
isoVertices.push_back(v);
vertexIdx = isoVertices.size() - 1;
edgeIdToIsoVertexIdxMap[sourceEdgeId] = vertexIdx;
}
else
{
vertexIdx = it->second;
}
isoIndices.push_back(static_cast<uint>(vertexIdx));
}
}
}
}
}
//tim.reportTime("Time generating iso");
//Trace::show("Vertices:%d Conns:%d Tris:%d", isoVertices.size(), isoIndices.size(), isoIndices.size()/3);
if (isoVertices.size() > 0 && isoIndices.size() > 0)
{
GeometryBuilderDrawableGeo builder;
builder.addVertices(Vec3fArray(isoVertices));
builder.addTriangles(UIntArray(isoIndices));
return builder.drawableGeo();
}
else
{
return NULL;
}
}
//--------------------------------------------------------------------------------------------------
/// Given a cell and an isolevel, calculate the triangular facets to represent the isosurface through the cell
///
/// \return Return the number of triangular facets. 0 will be returned if the grid cell is either
/// totally above of totally below the isolevel.
///
/// The array "triangles" will be loaded up with the vertices at most 5 triangular facets.
//--------------------------------------------------------------------------------------------------
int StructGridIsosurface::polygonise(double isolevel, const GridCell& grid, Triangle triangles[5], bool useTextureMapping)
{
// Determine the index into the edge table which tells us which vertices are inside of the surface
// Calculate from those vertices which are below the isolevel.
int cubeindex = 0;
if (grid.val[0] < isolevel) cubeindex |= 1;
if (grid.val[1] < isolevel) cubeindex |= 2;
if (grid.val[2] < isolevel) cubeindex |= 4;
if (grid.val[3] < isolevel) cubeindex |= 8;
if (grid.val[4] < isolevel) cubeindex |= 16;
if (grid.val[5] < isolevel) cubeindex |= 32;
if (grid.val[6] < isolevel) cubeindex |= 64;
if (grid.val[7] < isolevel) cubeindex |= 128;
// Cube is entirely in/out of the surface
if (sm_edgeTable[cubeindex] == 0)
{
return 0;
}
// Find the vertices where the surface intersects the cube
Vec3d vertlist[12];
double mapScalars[12];
if (useTextureMapping)
{
if (sm_edgeTable[cubeindex] & 1) vertlist[ 0] = vertexInterpolateWithMapping(isolevel, grid.p[0], grid.p[1], grid.val[0], grid.val[1], grid.mapVal[0], grid.mapVal[1], &mapScalars[ 0]);
if (sm_edgeTable[cubeindex] & 2) vertlist[ 1] = vertexInterpolateWithMapping(isolevel, grid.p[1], grid.p[2], grid.val[1], grid.val[2], grid.mapVal[1], grid.mapVal[2], &mapScalars[ 1]);
if (sm_edgeTable[cubeindex] & 4) vertlist[ 2] = vertexInterpolateWithMapping(isolevel, grid.p[2], grid.p[3], grid.val[2], grid.val[3], grid.mapVal[2], grid.mapVal[3], &mapScalars[ 2]);
if (sm_edgeTable[cubeindex] & 8) vertlist[ 3] = vertexInterpolateWithMapping(isolevel, grid.p[3], grid.p[0], grid.val[3], grid.val[0], grid.mapVal[3], grid.mapVal[0], &mapScalars[ 3]);
if (sm_edgeTable[cubeindex] & 16) vertlist[ 4] = vertexInterpolateWithMapping(isolevel, grid.p[4], grid.p[5], grid.val[4], grid.val[5], grid.mapVal[4], grid.mapVal[5], &mapScalars[ 4]);
if (sm_edgeTable[cubeindex] & 32) vertlist[ 5] = vertexInterpolateWithMapping(isolevel, grid.p[5], grid.p[6], grid.val[5], grid.val[6], grid.mapVal[5], grid.mapVal[6], &mapScalars[ 5]);
if (sm_edgeTable[cubeindex] & 64) vertlist[ 6] = vertexInterpolateWithMapping(isolevel, grid.p[6], grid.p[7], grid.val[6], grid.val[7], grid.mapVal[6], grid.mapVal[7], &mapScalars[ 6]);
if (sm_edgeTable[cubeindex] & 128) vertlist[ 7] = vertexInterpolateWithMapping(isolevel, grid.p[7], grid.p[4], grid.val[7], grid.val[4], grid.mapVal[7], grid.mapVal[4], &mapScalars[ 7]);
if (sm_edgeTable[cubeindex] & 256) vertlist[ 8] = vertexInterpolateWithMapping(isolevel, grid.p[0], grid.p[4], grid.val[0], grid.val[4], grid.mapVal[0], grid.mapVal[4], &mapScalars[ 8]);
if (sm_edgeTable[cubeindex] & 512) vertlist[ 9] = vertexInterpolateWithMapping(isolevel, grid.p[1], grid.p[5], grid.val[1], grid.val[5], grid.mapVal[1], grid.mapVal[5], &mapScalars[ 9]);
if (sm_edgeTable[cubeindex] & 1024) vertlist[10] = vertexInterpolateWithMapping(isolevel, grid.p[2], grid.p[6], grid.val[2], grid.val[6], grid.mapVal[2], grid.mapVal[6], &mapScalars[10]);
if (sm_edgeTable[cubeindex] & 2048) vertlist[11] = vertexInterpolateWithMapping(isolevel, grid.p[3], grid.p[7], grid.val[3], grid.val[7], grid.mapVal[3], grid.mapVal[7], &mapScalars[11]);
}
else
{
if (sm_edgeTable[cubeindex] & 1) vertlist[0] = vertexInterpolate(isolevel, grid.p[0], grid.p[1], grid.val[0], grid.val[1]);
if (sm_edgeTable[cubeindex] & 2) vertlist[1] = vertexInterpolate(isolevel, grid.p[1], grid.p[2], grid.val[1], grid.val[2]);
if (sm_edgeTable[cubeindex] & 4) vertlist[2] = vertexInterpolate(isolevel, grid.p[2], grid.p[3], grid.val[2], grid.val[3]);
if (sm_edgeTable[cubeindex] & 8) vertlist[3] = vertexInterpolate(isolevel, grid.p[3], grid.p[0], grid.val[3], grid.val[0]);
if (sm_edgeTable[cubeindex] & 16) vertlist[4] = vertexInterpolate(isolevel, grid.p[4], grid.p[5], grid.val[4], grid.val[5]);
if (sm_edgeTable[cubeindex] & 32) vertlist[5] = vertexInterpolate(isolevel, grid.p[5], grid.p[6], grid.val[5], grid.val[6]);
if (sm_edgeTable[cubeindex] & 64) vertlist[6] = vertexInterpolate(isolevel, grid.p[6], grid.p[7], grid.val[6], grid.val[7]);
if (sm_edgeTable[cubeindex] & 128) vertlist[7] = vertexInterpolate(isolevel, grid.p[7], grid.p[4], grid.val[7], grid.val[4]);
if (sm_edgeTable[cubeindex] & 256) vertlist[8] = vertexInterpolate(isolevel, grid.p[0], grid.p[4], grid.val[0], grid.val[4]);
if (sm_edgeTable[cubeindex] & 512) vertlist[9] = vertexInterpolate(isolevel, grid.p[1], grid.p[5], grid.val[1], grid.val[5]);
if (sm_edgeTable[cubeindex] & 1024) vertlist[10] = vertexInterpolate(isolevel, grid.p[2], grid.p[6], grid.val[2], grid.val[6]);
if (sm_edgeTable[cubeindex] & 2048) vertlist[11] = vertexInterpolate(isolevel, grid.p[3], grid.p[7], grid.val[3], grid.val[7]);
}
// Create the triangles
int ntriang = 0;
int i;
for (i = 0; sm_triTable[cubeindex][i] != -1; i += 3)
{
triangles[ntriang].p[0] = vertlist[sm_triTable[cubeindex][i ]];
triangles[ntriang].p[1] = vertlist[sm_triTable[cubeindex][i+1]];
triangles[ntriang].p[2] = vertlist[sm_triTable[cubeindex][i+2]];
triangles[ntriang].peid[0] = grid.eid[sm_triTable[cubeindex][i ]];
triangles[ntriang].peid[1] = grid.eid[sm_triTable[cubeindex][i+1]];
triangles[ntriang].peid[2] = grid.eid[sm_triTable[cubeindex][i+2]];
if (useTextureMapping)
{
triangles[ntriang].scalars[0] = mapScalars[sm_triTable[cubeindex][i ]];
triangles[ntriang].scalars[1] = mapScalars[sm_triTable[cubeindex][i+1]];
triangles[ntriang].scalars[2] = mapScalars[sm_triTable[cubeindex][i+2]];
}
ntriang++;
}
return ntriang;
}
//--------------------------------------------------------------------------------------------------
/// Linearly interpolate the position where an isosurface cuts an edge between two vertices, each with their own scalar value
//--------------------------------------------------------------------------------------------------
Vec3d StructGridIsosurface::vertexInterpolate(double isoLevel, const Vec3d& p1, const Vec3d& p2, double valp1, double valp2)
{
if (valp1 == valp2)
{
return p1;
}
else
{
double t = (isoLevel - valp1)/(valp2 - valp1);
CVF_ASSERT(t >= 0.0 && t <= 1.0);
if (t > 0.0 && t < 1.0)
{
Vec3d p;
p.x() = p1.x() + t * (p2.x() - p1.x());
p.y() = p1.y() + t * (p2.y() - p1.y());
p.z() = p1.z() + t * (p2.z() - p1.z());
return p;
}
else
{
if (t >= 1.0)
{
return p2;
}
else
{
return p1;
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// Linearly interpolate the position where an isosurface cuts an edge between two vertices, each with their own scalar value.
/// Also compute the mapping scalar value computed position
//--------------------------------------------------------------------------------------------------
Vec3d StructGridIsosurface::vertexInterpolateWithMapping(double isoLevel, const Vec3d& p1, const Vec3d& p2, const double valp1, const double valp2, const double mapValP1, const double mapValP2, double* mapVal)
{
if (valp1 == valp2)
{
*mapVal = mapValP1;
return p1;
}
else
{
double t = (isoLevel - valp1)/(valp2 - valp1);
CVF_ASSERT(t >= 0.0 && t <= 1.0);
if (t > 0.0 && t < 1.0)
{
Vec3d p;
p.x() = p1.x() + t * (p2.x() - p1.x());
p.y() = p1.y() + t * (p2.y() - p1.y());
p.z() = p1.z() + t * (p2.z() - p1.z());
*mapVal = mapValP1 + t * (mapValP2 - mapValP1);
return p;
}
else
{
if (t >= 1.0)
{
*mapVal = mapValP2;
return p2;
}
else
{
*mapVal = mapValP1;
return p1;
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// In order to get texture mapping, map scalar set index and scalar mapper object must be defined,
/// and the map scalar set index must be different to the scalar index used as basis for the iso surface
//--------------------------------------------------------------------------------------------------
bool StructGridIsosurface::mapScalar() const
{
if (m_mapScalarSetIndex == UNDEFINED_UINT)
{
return false;
}
if (m_mapScalarSetIndex == m_scalarSetIndex)
{
return false;
}
if (m_scalarMapper.isNull())
{
return false;
}
return true;
}
} // namespace cvf