mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-09 23:53:04 -06:00
1088 lines
37 KiB
C++
1088 lines
37 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) Statoil ASA
|
|
// Copyright (C) Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "cvfGeometryTools.h"
|
|
|
|
#pragma warning (disable : 4503)
|
|
namespace cvf
|
|
{
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::computeFaceCenter(const cvf::Vec3d& v0, const cvf::Vec3d& v1, const cvf::Vec3d& v2, const cvf::Vec3d& v3)
|
|
{
|
|
cvf::Vec3d centerCoord = v0;
|
|
centerCoord += v1;
|
|
centerCoord += v2;
|
|
centerCoord += v3;
|
|
centerCoord *= 0.25;
|
|
|
|
return centerCoord;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Ez = Plane normal, Ex = in XY plane (horizontal), Ey = semi vertical upwards
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Mat3f GeometryTools::computePlaneHorizontalRotationMx(const cvf::Vec3f& inPlaneVec0, const cvf::Vec3f& inPlaneVec1)
|
|
{
|
|
cvf::Vec3f Ez = inPlaneVec0 ^ inPlaneVec1;
|
|
|
|
if (!Ez.normalize()) return cvf::Mat3f::IDENTITY;
|
|
|
|
cvf::Vec3f Ex = Ez ^ cvf::Vec3f::Z_AXIS;
|
|
|
|
if (!Ex.normalize()) return cvf::Mat3f::IDENTITY;
|
|
|
|
cvf::Vec3f Ey = Ez ^ Ex;
|
|
|
|
if(Ey[2] < 0.0f) // Semi vertical is down
|
|
{
|
|
return cvf::Mat3f(-Ex[0], -Ey[0], Ez[0],
|
|
-Ex[1], -Ey[1], Ez[1],
|
|
-Ex[2], -Ey[2], Ez[2]);
|
|
}
|
|
else
|
|
{
|
|
return cvf::Mat3f(Ex[0], Ey[0], Ez[0],
|
|
Ex[1], Ey[1], Ez[1],
|
|
Ex[2], Ey[2], Ez[2]);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
int GeometryTools::findClosestAxis(const cvf::Vec3d& vec )
|
|
{
|
|
int closestAxis = 0;
|
|
double maxComponent = fabs(vec.x());
|
|
|
|
if (fabs(vec.y()) > maxComponent)
|
|
{
|
|
maxComponent = (float)fabs(vec.y());
|
|
closestAxis = 1;
|
|
}
|
|
|
|
if (fabs(vec.z()) > maxComponent)
|
|
{
|
|
closestAxis = 2;
|
|
}
|
|
|
|
return closestAxis;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Return angle between vectors if v1 x v2 is same way as normal
|
|
/// else return 2PI - angle
|
|
/// This means if the angle is slightly "negative", using the right hand rule, this method will return
|
|
/// nearly 2*PI
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
double const MY_PI = 4 * atan(1.0);
|
|
|
|
double GeometryTools::getAngle(const cvf::Vec3d& positiveNormalAxis, const cvf::Vec3d& v1, const cvf::Vec3d& v2)
|
|
{
|
|
bool isOk = false;
|
|
cvf::Vec3d v1N = v1.getNormalized(&isOk);
|
|
if (!isOk) return 0;
|
|
cvf::Vec3d v2N = v2.getNormalized();
|
|
if (!isOk) return 0;
|
|
|
|
double cosAng = v1N * v2N;
|
|
// Guard acos against out-of-domain input
|
|
if (cosAng <= -1.0)
|
|
{
|
|
cosAng = -1.0;
|
|
}
|
|
else if (cosAng >= 1.0)
|
|
{
|
|
cosAng = 1.0;
|
|
}
|
|
double angle = acos(cosAng);
|
|
|
|
cvf::Vec3d crossProd = v1N ^ v2N;
|
|
double sign = positiveNormalAxis * crossProd;
|
|
if (sign < 0)
|
|
{
|
|
angle = 2*MY_PI - angle;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Return angle in radians between vectors [0, Pi]
|
|
/// If v1 or v2 is zero, the method will return 0.
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
double GeometryTools::getAngle(const cvf::Vec3d& v1, const cvf::Vec3d& v2)
|
|
{
|
|
bool isOk = false;
|
|
cvf::Vec3d v1N = v1.getNormalized(&isOk);
|
|
if (!isOk) return 0;
|
|
cvf::Vec3d v2N = v2.getNormalized();
|
|
if (!isOk) return 0;
|
|
|
|
double cosAng = v1N * v2N;
|
|
// Guard acos against out-of-domain input
|
|
if (cosAng <= -1.0)
|
|
{
|
|
cosAng = -1.0;
|
|
}
|
|
else if (cosAng >= 1.0)
|
|
{
|
|
cosAng = 1.0;
|
|
}
|
|
double angle = acos(cosAng);
|
|
|
|
return angle;
|
|
}
|
|
|
|
/*
|
|
Determine the intersection point of two line segments
|
|
From Paul Bourke, but modified to really handle coincident lines
|
|
and lines with touching vertexes.
|
|
Returns an intersection status telling what kind of intersection it is (if any)
|
|
*/
|
|
|
|
GeometryTools::IntersectionStatus inPlaneLineIntersect(
|
|
double x1, double y1,
|
|
double x2, double y2,
|
|
double x3, double y3,
|
|
double x4, double y4,
|
|
double l1NormalizedTolerance, double l2NormalizedTolerance,
|
|
double *x, double *y, double* fractionAlongLine1, double* fractionAlongLine2)
|
|
{
|
|
double mua, mub;
|
|
double denom, numera, numerb;
|
|
|
|
denom = (y4-y3) * (x2-x1) - (x4-x3) * (y2-y1);
|
|
numera = (x4-x3) * (y1-y3) - (y4-y3) * (x1-x3);
|
|
numerb = (x2-x1) * (y1-y3) - (y2-y1) * (x1-x3);
|
|
|
|
double EPS = 1e-40;
|
|
|
|
// Are the line coincident?
|
|
if (fabs(numera) < EPS && fabs(numerb) < EPS && fabs(denom) < EPS)
|
|
{
|
|
#if 0
|
|
*x = 0;
|
|
*y = 0;
|
|
*fractionAlongLine1 = 0;
|
|
*fractionAlongLine2 = 0;
|
|
return GeometryTools::LINES_OVERLAP;
|
|
#else
|
|
cvf::Vec3d p12(x2-x1, y2-y1, 0);
|
|
cvf::Vec3d p13(x3-x1, y3-y1, 0);
|
|
cvf::Vec3d p34(x4-x3, y4-y3, 0);
|
|
|
|
double length12 = p12.length();
|
|
double length34 = p34.length();
|
|
|
|
// Check if the p1 p2 line is a point
|
|
|
|
if (length12 < EPS )
|
|
{
|
|
*x = x1;
|
|
*y = y1;
|
|
*fractionAlongLine1 = 1;
|
|
*fractionAlongLine2 = p13.length()/p34.length();
|
|
return GeometryTools::LINES_OVERLAP;
|
|
}
|
|
|
|
cvf::Vec3d p14(x4-x1, y4-y1, 0);
|
|
cvf::Vec3d p32(x2-x3, y2-y3, 0);
|
|
|
|
cvf::Vec3d e12 = p12.getNormalized();
|
|
double normDist13 = e12*p13 / length12;
|
|
double normDist14 = e12*p14 / length12;
|
|
|
|
// Check if both points on the p3 p4 line is outside line p1 p2.
|
|
if( (normDist13 < 0 - l1NormalizedTolerance && normDist14 < 0-l1NormalizedTolerance )|| (normDist13 > 1 +l1NormalizedTolerance && normDist14 > 1+l1NormalizedTolerance ) )
|
|
{
|
|
*x = 0;
|
|
*y = 0;
|
|
*fractionAlongLine1 = 0;
|
|
*fractionAlongLine2 = 0;
|
|
return GeometryTools::NO_INTERSECTION;
|
|
}
|
|
|
|
double normDist32 = e12*p32 / length34;
|
|
//double normDist31 = -e12*p13 / length34;
|
|
|
|
// Set up fractions along lines to the edge2 vertex actually touching edge 1.
|
|
/// if two, select the one furthest from the start
|
|
bool pt3IsInside = false;
|
|
bool pt4IsInside = false;
|
|
if ((0.0 - l1NormalizedTolerance) <= normDist13 && normDist13 <= (1.0 +l1NormalizedTolerance) ) pt3IsInside = true;
|
|
if ((0.0 - l1NormalizedTolerance) <= normDist14 && normDist14 <= (1.0 +l1NormalizedTolerance) ) pt4IsInside = true;
|
|
|
|
if (pt3IsInside && !pt4IsInside)
|
|
{
|
|
*fractionAlongLine1 = normDist13;
|
|
*fractionAlongLine2 = 0.0;
|
|
*x = x3;
|
|
*y = y3;
|
|
}
|
|
else if (pt4IsInside && !pt3IsInside)
|
|
{
|
|
*fractionAlongLine1 = normDist14;
|
|
*fractionAlongLine2 = 1.0;
|
|
*x = x4;
|
|
*y = y4;
|
|
}
|
|
else if (pt3IsInside && pt4IsInside)
|
|
{
|
|
// Return edge 2 vertex furthest along edge 1
|
|
if (normDist13 <= normDist14)
|
|
{
|
|
*fractionAlongLine1 = normDist14 ;
|
|
*fractionAlongLine2 = 1.0;
|
|
*x = x4;
|
|
*y = y4;
|
|
}
|
|
else
|
|
{
|
|
*fractionAlongLine1 = normDist13;
|
|
*fractionAlongLine2 = 0.0;
|
|
*x = x3;
|
|
*y = y3;
|
|
}
|
|
}
|
|
else // both outside on each side
|
|
{
|
|
// Return End of edge 1
|
|
*fractionAlongLine1 = 1.0;
|
|
*fractionAlongLine2 = normDist32;
|
|
*x = x2;
|
|
*y = y2;
|
|
}
|
|
|
|
return GeometryTools::LINES_OVERLAP;
|
|
#endif
|
|
}
|
|
|
|
/* Are the line parallel */
|
|
if (fabs(denom) < EPS) {
|
|
*x = 0;
|
|
*y = 0;
|
|
*fractionAlongLine1 = 0;
|
|
*fractionAlongLine2 = 0;
|
|
|
|
return GeometryTools::NO_INTERSECTION;
|
|
}
|
|
|
|
/* Is the intersection along the the segments */
|
|
mua = numera / denom;
|
|
mub = numerb / denom;
|
|
|
|
*x = x1 + mua * (x2 - x1);
|
|
*y = y1 + mua * (y2 - y1);
|
|
*fractionAlongLine1 = mua;
|
|
*fractionAlongLine2 = mub;
|
|
|
|
if (mua < 0 - l1NormalizedTolerance || 1 + l1NormalizedTolerance < mua || mub < 0 - l2NormalizedTolerance || 1 + l2NormalizedTolerance < mub)
|
|
{
|
|
return GeometryTools::LINES_INTERSECT_OUTSIDE;
|
|
}
|
|
else if (fabs(mua) < l1NormalizedTolerance || fabs(1-mua) < l1NormalizedTolerance ||
|
|
fabs(mub) < l2NormalizedTolerance || fabs(1-mub) < l2NormalizedTolerance )
|
|
{
|
|
if (fabs(mua) < l1NormalizedTolerance) *fractionAlongLine1 = 0;
|
|
if (fabs(1-mua) < l1NormalizedTolerance) *fractionAlongLine1 = 1;
|
|
if (fabs(mub) < l2NormalizedTolerance) *fractionAlongLine2 = 0;
|
|
if (fabs(1-mub) < l2NormalizedTolerance) *fractionAlongLine2 = 1;
|
|
return GeometryTools::LINES_TOUCH;
|
|
}
|
|
else
|
|
{
|
|
return GeometryTools::LINES_CROSSES;
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------
|
|
/// Supposed to find the intersection point if lines intersect
|
|
/// It returns the intersection status telling if the lines only touch or are overlapping
|
|
//----------------------------------------------------------------------------------------------------------
|
|
|
|
GeometryTools::IntersectionStatus
|
|
GeometryTools::inPlaneLineIntersect3D( const cvf::Vec3d& planeNormal,
|
|
const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3, const cvf::Vec3d& p4,
|
|
cvf::Vec3d* intersectionPoint, double* fractionAlongLine1, double* fractionAlongLine2, double tolerance)
|
|
{
|
|
CVF_ASSERT (intersectionPoint != nullptr);
|
|
|
|
int Z = findClosestAxis(planeNormal);
|
|
int X = (Z + 1) % 3;
|
|
int Y = (Z + 2) % 3;
|
|
double x, y;
|
|
|
|
// Todo: handle zero length edges
|
|
double l1NormTol = tolerance / (p2-p1).length();
|
|
double l2NormTol = tolerance / (p4-p3).length();
|
|
|
|
IntersectionStatus intersectionStatus = inPlaneLineIntersect(p1[X], p1[Y], p2[X], p2[Y], p3[X], p3[Y], p4[X], p4[Y], l1NormTol, l2NormTol, &x, &y, fractionAlongLine1, fractionAlongLine2);
|
|
|
|
// Check if we have a valid intersection point
|
|
if (intersectionStatus == NO_INTERSECTION || intersectionStatus == LINES_OVERLAP)
|
|
{
|
|
intersectionPoint->setZero();
|
|
}
|
|
else
|
|
{
|
|
*intersectionPoint = p1 + (*fractionAlongLine1)*(p2-p1);
|
|
}
|
|
|
|
return intersectionStatus;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Compute projection of point p3 on the line p1 - p2
|
|
// If projection is out side the line segment, the end of line is returned
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::projectPointOnLine(const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3, double* normalizedIntersection)
|
|
{
|
|
cvf::Vec3d v31 = p3 - p1;
|
|
cvf::Vec3d v21 = p2 - p1;
|
|
|
|
double u = (v31*v21) / (v21*v21);
|
|
cvf::Vec3d projectedPoint(0, 0, 0);
|
|
if (0 < u && u < 1) projectedPoint = p1 + u*v21;
|
|
else if (u <= 0) projectedPoint = p1;
|
|
else projectedPoint = p2;
|
|
|
|
if (normalizedIntersection)
|
|
{
|
|
*normalizedIntersection = u;
|
|
}
|
|
|
|
return projectedPoint;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// TODO: Use GeometryTools::projectPointOnLine
|
|
//--------------------------------------------------------------------------------------------------
|
|
double GeometryTools::linePointSquareDist(const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3)
|
|
{
|
|
cvf::Vec3d v31 = p3 - p1;
|
|
cvf::Vec3d v21 = p2 - p1;
|
|
|
|
double geomTolerance = 1e-24;
|
|
if (v21.lengthSquared() < geomTolerance)
|
|
{
|
|
// P2 and P1 coincide, use distance from P3 to P1
|
|
return v31.lengthSquared();
|
|
}
|
|
|
|
double u = (v31*v21)/(v21*v21);
|
|
cvf::Vec3d pOnLine(0,0,0);
|
|
if (0 < u && u < 1) pOnLine = p1 + u*v21;
|
|
else if (u <= 0 ) pOnLine = p1;
|
|
else pOnLine = p2;
|
|
|
|
return (p3-pOnLine).lengthSquared();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Copyright 2001, softSurfer (www.softsurfer.com)
|
|
// This code may be freely used and modified for any purpose
|
|
// providing that this copyright notice is included with it.
|
|
// SoftSurfer makes no warranty for this code, and cannot be held
|
|
// liable for any real or imagined damage resulting from its use.
|
|
// Users of this code must verify correctness for their application.
|
|
// http://www.softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm
|
|
//
|
|
/// Intersect a line segment with a 3D triangle
|
|
/// Input: A line segment p0, p1. A triangle t0, t1, t2.
|
|
/// Output: *intersectionPoint = intersection point (when it exists)
|
|
/// Return: -1 = triangle is degenerate (a segment or point)
|
|
/// 0 = disjoint (no intersect)
|
|
/// 1 = intersect in unique point I1
|
|
/// 2 = are in the same plane
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
#define SMALL_NUM 0.00000001 // anything that avoids division overflow
|
|
// dot product (3D) which allows vector operations in arguments
|
|
#define dot(u,v) ((u).x() * (v).x() + (u).y() * (v).y() + (u).z() * (v).z())
|
|
|
|
int GeometryTools::intersectLineSegmentTriangle( const cvf::Vec3d p0, const cvf::Vec3d p1,
|
|
const cvf::Vec3d t0, const cvf::Vec3d t1, const cvf::Vec3d t2,
|
|
cvf::Vec3d* intersectionPoint , bool * isLineDirDotNormalNegative)
|
|
{
|
|
CVF_TIGHT_ASSERT(intersectionPoint != nullptr);
|
|
CVF_TIGHT_ASSERT(isLineDirDotNormalNegative != nullptr);
|
|
|
|
cvf::Vec3d u, v, n; // triangle vectors
|
|
cvf::Vec3d dir, w0, w; // ray vectors
|
|
double r, a, b; // params to calc ray-plane intersect
|
|
|
|
// get triangle edge vectors and plane normal
|
|
u = t1 - t0;
|
|
v = t2 - t0;
|
|
n = u ^ v; // cross product
|
|
if (n == cvf::Vec3d::ZERO) // triangle is degenerate
|
|
return -1; // do not deal with this case
|
|
|
|
dir = p1 - p0; // ray direction vector
|
|
w0 = p0 - t0;
|
|
a = -dot(n, w0);
|
|
b = dot(n, dir);
|
|
|
|
(*isLineDirDotNormalNegative) = (b < 0.0);
|
|
|
|
if (fabs(b) < SMALL_NUM) { // ray is parallel to triangle plane
|
|
if (a == 0) // ray lies in triangle plane
|
|
return 2;
|
|
else return 0; // ray disjoint from plane
|
|
}
|
|
|
|
// get intersect point of ray with triangle plane
|
|
r = a / b;
|
|
if (r < 0.0) // ray goes away from triangle
|
|
return 0; // => no intersect
|
|
|
|
if (r > 1.0) // Line segment does not reach triangle
|
|
return 0;
|
|
|
|
*intersectionPoint = p0 + r * dir; // intersect point of ray and plane
|
|
|
|
// is I inside T?
|
|
double uu, uv, vv, wu, wv, D;
|
|
uu = dot(u, u);
|
|
uv = dot(u, v);
|
|
vv = dot(v, v);
|
|
w = *intersectionPoint - t0;
|
|
wu = dot(w, u);
|
|
wv = dot(w, v);
|
|
D = uv * uv - uu * vv;
|
|
|
|
// get and test parametric coords
|
|
double s, t;
|
|
s = (uv * wv - vv * wu) / D;
|
|
if (s < 0.0 || s > 1.0) // I is outside T
|
|
return 0;
|
|
|
|
t = (uv * wu - uu * wv) / D;
|
|
if (t < 0.0 || (s + t) > 1.0) // I is outside T
|
|
return 0;
|
|
|
|
return 1; // I is in T
|
|
}
|
|
|
|
/*
|
|
// t0 = (x0, y0, z0)
|
|
// t1 = (x1, y1, z1)
|
|
// t2 = (x2, y2, z2)
|
|
//
|
|
// p = (xp, yp, zp)
|
|
|
|
cvf::Vec3d barycentricCoordsExperiment(const cvf::Vec3d& t0, const cvf::Vec3d& t1, const cvf::Vec3d& t2, const cvf::Vec3d& p)
|
|
{
|
|
det = x0(y1*z2 - y2*z1) + x1(y2*z0 - z2*y0) + x2(y0*z1 - y1*z0);
|
|
|
|
b0 = ((x1 * y2 - x2*y1)*zp + xp*(y1*z2-y2*z1) + yp*(x2*z1-x1*z2)) / det;
|
|
b1 = ((x2 * y0 - x0*y2)*zp + xp*(y2*z0-y0*z2) + yp*(x0*z2-x2*z0)) / det;
|
|
b2 = ((x0 * y1 - x1*y0)*zp + xp*(y0*z1-y1*z0) + yp*(x1*z0-x0*z1)) / det;
|
|
}
|
|
|
|
*/
|
|
|
|
inline double TriArea2D(double x1, double y1, double x2, double y2, double x3, double y3)
|
|
{
|
|
return (x1-x2)*(y2-y3) - (x2-x3)*(y1-y2);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Compute barycentric coordinates (area coordinates) (u, v, w) for
|
|
// point p with respect to triangle (t0, t1, t2)
|
|
// These can be used as weights for interpolating scalar values across the triangle
|
|
// Based on section 3.4 in "Real Time collision detection" by Christer Ericson
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::barycentricCoords(const cvf::Vec3d& t0, const cvf::Vec3d& t1, const cvf::Vec3d& t2, const cvf::Vec3d& p)
|
|
{
|
|
// Unnormalized triangle normal
|
|
cvf::Vec3d m = (t1 - t0 ^ t2 - t0);
|
|
|
|
// Absolute components for determining projection plane
|
|
int X = 0, Y = 1;
|
|
int Z = findClosestAxis(m);
|
|
switch (Z)
|
|
{
|
|
case 0: X = 1; Y = 2; break; // x is largest, project to the yz plane
|
|
case 1: X = 0; Y = 2; break; // y is largest, project to the xz plane
|
|
case 2: X = 0; Y = 1; break; // z is largest, project to the xy plane
|
|
}
|
|
|
|
// Compute areas in plane of largest projection
|
|
// Nominators and one-over-denominator for u and v ratios
|
|
double nu, nv, ood;
|
|
nu = TriArea2D(p[X], p[Y], t1[X], t1[Y], t2[X], t2[Y]); // Area of PBC in yz plane
|
|
nv = TriArea2D(p[X], p[Y], t2[X], t2[Y], t0[X], t0[Y]); // Area of PCA in yz plane
|
|
ood = 1.0f / m[Z]; // 1/(2*area of ABC in yz plane)
|
|
|
|
if (Z == 1) ood = -ood; // For some reason not explained
|
|
|
|
// Normalize
|
|
|
|
m[0] = nu * ood;
|
|
m[1] = nv * ood;
|
|
m[2] = 1.0f - m[0] - m[1];
|
|
|
|
return m;
|
|
}
|
|
|
|
inline double triArea3D(const cvf::Vec3d& v0,
|
|
const cvf::Vec3d& v1,
|
|
const cvf::Vec3d& v2)
|
|
{
|
|
return 0.5 * ((v1-v0) ^ (v2 - v0)).length();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Barycentric coordinates of a Quad
|
|
/// See http://geometry.caltech.edu/pubs/MHBD02.pdf for details Eqn. 6.
|
|
/// W_i = a_i / Sum(a_0 ... a_3)
|
|
/// a_i = Area(v_(i-1), v_i, v_(i+1))*Area(p, v_(i-2), v_(i-1))*Area(p, v_(i+1), v_(i+2))
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec4d GeometryTools::barycentricCoords(const cvf::Vec3d& v0,
|
|
const cvf::Vec3d& v1,
|
|
const cvf::Vec3d& v2,
|
|
const cvf::Vec3d& v3,
|
|
const cvf::Vec3d& p)
|
|
{
|
|
cvf::Vec4d w;
|
|
cvf::Vec4d a;
|
|
|
|
a[0] = triArea3D(v3, v0, v1)*triArea3D(p, v2, v3)*triArea3D(p, v1, v2);
|
|
a[1] = triArea3D(v0, v1, v2)*triArea3D(p, v3, v0)*triArea3D(p, v2, v3);
|
|
a[2] = triArea3D(v1, v2, v3)*triArea3D(p, v0, v1)*triArea3D(p, v3, v0);
|
|
a[3] = triArea3D(v2, v3, v0)*triArea3D(p, v1, v2)*triArea3D(p, v0, v1);
|
|
|
|
double sum_a = a[0] + a[1] + a[2] + a[3];
|
|
|
|
w[0] = a[0]/sum_a;
|
|
w[1] = a[1]/sum_a;
|
|
w[2] = a[2]/sum_a;
|
|
w[3] = a[3]/sum_a;
|
|
|
|
return w;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void GeometryTools::addMidEdgeNodes(std::list<std::pair<cvf::uint, bool> >* polygon, const cvf::Vec3dArray& nodes, EdgeSplitStorage& edgeSplitStorage, std::vector<cvf::Vec3d>* createdVertexes)
|
|
{
|
|
size_t newVertexIndex = nodes.size() + createdVertexes->size();
|
|
std::list<std::pair<cvf::uint, bool> >::iterator it;
|
|
std::list<std::pair<cvf::uint, bool> >::iterator it2;
|
|
|
|
cvf::Vec3d midEdgeCoord(0,0,0);
|
|
size_t midPointIndex = cvf::UNDEFINED_UINT;
|
|
|
|
for (it = polygon->begin(); it != polygon->end(); ++it)
|
|
{
|
|
it2 = it;
|
|
++it2; if (it2 == polygon->end()) it2 = polygon->begin();
|
|
|
|
// Find or Create and add a mid-edge node
|
|
|
|
if (!edgeSplitStorage.findSplitPoint(it->first, it2->first, &midPointIndex))
|
|
{
|
|
|
|
midEdgeCoord.setZero();
|
|
midEdgeCoord += (it->first < nodes.size()) ? nodes[it->first] : (*createdVertexes)[it->first - nodes.size()];
|
|
midEdgeCoord += (it2->first < nodes.size()) ? nodes[it2->first] : (*createdVertexes)[it2->first - nodes.size()];
|
|
midEdgeCoord *= 0.5;
|
|
|
|
midPointIndex = newVertexIndex;
|
|
createdVertexes->push_back(midEdgeCoord);
|
|
++newVertexIndex;
|
|
|
|
edgeSplitStorage.addSplitPoint(it->first, it2->first, midPointIndex);
|
|
}
|
|
|
|
if (it2 != polygon->begin())
|
|
polygon->insert(it2, std::make_pair((cvf::uint)midPointIndex, true));
|
|
else
|
|
polygon->insert(polygon->end(), std::make_pair((cvf::uint)midPointIndex, true));
|
|
|
|
++it;
|
|
|
|
if (it == polygon->end()) break;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Based on http://geomalgorithms.com/a01-_area.html
|
|
/// This method returns the polygon normal with length equal to the polygon area.
|
|
/// The components of the normal is thus the size of projected area into each of the main axis planes
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::polygonAreaNormal3D(const std::vector<cvf::Vec3d>& polygon)
|
|
{
|
|
size_t pSize = polygon.size();
|
|
switch (pSize)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
{
|
|
return cvf::Vec3d::ZERO;
|
|
}
|
|
break;
|
|
case 3:
|
|
{
|
|
return 0.5 * ((polygon[1]-polygon[0]) ^ (polygon[2] - polygon[0]));
|
|
}
|
|
break;
|
|
case 4:
|
|
{
|
|
// Cross product of diagonal = 2*A
|
|
return 0.5* ((polygon[2]-polygon[0]) ^ (polygon[3] - polygon[1]));
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
/// JJS:
|
|
// This is possibly not the fastest approach with large polygons, where a scaled projections approach would be better,
|
|
// but I suspect this (simpler) approach is faster for small polygons, as long as we do not have the polygon normal up front.
|
|
//
|
|
cvf::Vec3d areaNormal(cvf::Vec3d::ZERO);
|
|
size_t h = (pSize - 1)/2;
|
|
size_t k = (pSize % 2) ? 0 : pSize - 1;
|
|
|
|
// First quads
|
|
for (size_t i = 1; i < h; ++i)
|
|
{
|
|
areaNormal += ( (polygon[2*i] - polygon[0]) ^ (polygon[2*i + 1] - polygon[2*i-1] ) );
|
|
}
|
|
|
|
// Last triangle or quad
|
|
areaNormal += ( (polygon[2*h] - polygon[0]) ^ (polygon[k] - polygon[2*h-1] ) );
|
|
|
|
areaNormal *= 0.5;
|
|
|
|
return areaNormal;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EdgeSplitStorage::setVertexCount(size_t size)
|
|
{
|
|
m_edgeSplitMap.resize(size);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool EdgeSplitStorage::findSplitPoint(size_t edgeP1Index, size_t edgeP2Index, size_t* splitPointIndex)
|
|
{
|
|
canonizeAddress(edgeP1Index, edgeP2Index);
|
|
CVF_ASSERT(edgeP1Index < m_edgeSplitMap.size());
|
|
|
|
std::map< size_t, size_t >::iterator it;
|
|
|
|
it = m_edgeSplitMap[edgeP1Index].find(edgeP2Index);
|
|
if (it == m_edgeSplitMap[edgeP1Index].end()) return false;
|
|
|
|
*splitPointIndex = it->second;
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EdgeSplitStorage::addSplitPoint(size_t edgeP1Index, size_t edgeP2Index, size_t splitPointIndex)
|
|
{
|
|
canonizeAddress(edgeP1Index, edgeP2Index);
|
|
CVF_ASSERT(edgeP1Index < m_edgeSplitMap.size());
|
|
m_edgeSplitMap[edgeP1Index][edgeP2Index] = splitPointIndex;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EdgeSplitStorage::canonizeAddress(size_t& edgeP1Index, size_t& edgeP2Index)
|
|
{
|
|
if (edgeP1Index > edgeP2Index)
|
|
{
|
|
size_t tmp;
|
|
tmp = edgeP1Index;
|
|
edgeP1Index = edgeP2Index;
|
|
edgeP2Index = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
EarClipTesselator::EarClipTesselator():
|
|
m_X(-1),
|
|
m_Y(-1),
|
|
m_areaTolerance(1e-12),
|
|
m_nodeCoords(nullptr)
|
|
{
|
|
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// \brief Do the main processing/actual triangulation
|
|
/// \param triangleIndices Array that will receive the indices of the triangles resulting from the triangulation
|
|
/// \return true when a tesselation was successully created
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
bool EarClipTesselator::calculateTriangles( std::vector<size_t>* triangleIndices )
|
|
{
|
|
CVF_ASSERT(m_nodeCoords != nullptr);
|
|
CVF_ASSERT(m_X > -1 && m_Y > -1);
|
|
|
|
size_t numVertices = m_polygonIndices.size();
|
|
|
|
if (numVertices < 3) return false;
|
|
|
|
// We want m_polygonIndices to be a counter-clockwise polygon to make the validation test work
|
|
|
|
if (calculateProjectedPolygonArea() < 0 )
|
|
{
|
|
m_polygonIndices.reverse();
|
|
}
|
|
|
|
std::list<size_t>::iterator u, v, w;
|
|
|
|
// If we loop two times around polygon without clipping a single triangle we are toast.
|
|
size_t count = 2*numVertices; // error detection
|
|
|
|
v = m_polygonIndices.end(); //nv - 1;
|
|
--v;
|
|
|
|
while (numVertices > 2)
|
|
{
|
|
// if we loop, it is probably a non-simple polygon
|
|
if (count == 0 )
|
|
{
|
|
// Triangulate: ERROR - probable bad polygon!
|
|
return false;
|
|
}
|
|
--count;
|
|
|
|
// Three consecutive vertices in current polygon, <u,v,w>
|
|
// previous
|
|
u = v;
|
|
if (u == m_polygonIndices.end()) u = m_polygonIndices.begin(); // if (nv <= u) u = 0;
|
|
|
|
// new v
|
|
v = u; ++v; //u + 1;
|
|
if (v == m_polygonIndices.end()) v = m_polygonIndices.begin(); //if (nv <= v) v = 0;
|
|
|
|
// next
|
|
w = v; ++w; //v + 1;
|
|
if (w == m_polygonIndices.end()) w = m_polygonIndices.begin(); //if (nv <= w) w = 0;
|
|
|
|
|
|
if ( isTriangleValid(u, v, w) )
|
|
{
|
|
// Indices of the vertices
|
|
triangleIndices->push_back(*u);
|
|
triangleIndices->push_back(*v);
|
|
triangleIndices->push_back(*w);
|
|
|
|
// Remove v from remaining polygon
|
|
m_polygonIndices.erase(v);
|
|
v = w;
|
|
numVertices--;
|
|
|
|
// Resets error detection counter
|
|
count = 2*numVertices;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Is this a valid triangle ? ( No points inside, and points not on a line. )
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
bool EarClipTesselator::isTriangleValid( std::list<size_t>::const_iterator u, std::list<size_t>::const_iterator v, std::list<size_t>::const_iterator w) const
|
|
{
|
|
CVF_ASSERT(m_X > -1 && m_Y > -1);
|
|
|
|
cvf::Vec3d A = (*m_nodeCoords)[*u];
|
|
cvf::Vec3d B = (*m_nodeCoords)[*v];
|
|
cvf::Vec3d C = (*m_nodeCoords)[*w];
|
|
|
|
if ( m_areaTolerance > (((B[m_X]-A[m_X])*(C[m_Y]-A[m_Y])) - ((B[m_Y]-A[m_Y])*(C[m_X]-A[m_X]))) ) return false;
|
|
|
|
std::list<size_t>::const_iterator c;
|
|
std::list<size_t>::const_iterator outside;
|
|
for (c = m_polygonIndices.begin(); c != m_polygonIndices.end(); ++c)
|
|
{
|
|
// The polygon points that actually make up the triangle candidate does not count
|
|
// (but the same points on different positions in the polygon does!
|
|
// Except those one off the triangle, that references the start or end of the triangle)
|
|
|
|
if ( (c == u) || (c == v) || (c == w)) continue;
|
|
|
|
// Originally the below tests was not included which resulted in missing triangles sometimes
|
|
|
|
outside = w; ++outside; if (outside == m_polygonIndices.end()) outside = m_polygonIndices.begin();
|
|
if (c == outside && *c == *u)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
outside = u; if (outside == m_polygonIndices.begin()) outside = m_polygonIndices.end(); --outside;
|
|
if (c == outside && *c == *w)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
cvf::Vec3d P = (*m_nodeCoords)[*c];
|
|
|
|
if (isPointInsideTriangle(A, B, C, P)) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Decides if a point P is inside of the triangle defined by A, B, C.
|
|
/// By calculating the "double area" (cross product) of Corner to corner x Corner to point vectors
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
bool EarClipTesselator::isPointInsideTriangle(const cvf::Vec3d& A, const cvf::Vec3d& B, const cvf::Vec3d& C, const cvf::Vec3d& P) const
|
|
{
|
|
CVF_ASSERT(m_X > -1 && m_Y > -1);
|
|
|
|
double ax = C[m_X] - B[m_X]; double ay = C[m_Y] - B[m_Y];
|
|
double bx = A[m_X] - C[m_X]; double by = A[m_Y] - C[m_Y];
|
|
double cx = B[m_X] - A[m_X]; double cy = B[m_Y] - A[m_Y];
|
|
|
|
double apx= P[m_X] - A[m_X]; double apy= P[m_Y] - A[m_Y];
|
|
double bpx= P[m_X] - B[m_X]; double bpy= P[m_Y] - B[m_Y];
|
|
double cpx= P[m_X] - C[m_X]; double cpy= P[m_Y] - C[m_Y];
|
|
|
|
double aCROSSbp = ax*bpy - ay*bpx;
|
|
double cCROSSap = cx*apy - cy*apx;
|
|
double bCROSScp = bx*cpy - by*cpx;
|
|
double tol = 0;
|
|
return ((aCROSSbp >= tol) && (bCROSScp >= tol) && (cCROSSap >= tol));
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Computes area of the currently stored 2D polygon/contour
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
double EarClipTesselator::calculateProjectedPolygonArea() const
|
|
{
|
|
CVF_ASSERT(m_X > -1 && m_Y > -1);
|
|
|
|
double A = 0;
|
|
|
|
std::list<size_t>::const_iterator p = m_polygonIndices.end();
|
|
--p;
|
|
|
|
std::list<size_t>::const_iterator q = m_polygonIndices.begin();
|
|
while (q != m_polygonIndices.end())
|
|
{
|
|
A += (*m_nodeCoords)[*p][m_X] * (*m_nodeCoords)[*q][m_Y] - (*m_nodeCoords)[*q][m_X]*(*m_nodeCoords)[*p][m_Y];
|
|
|
|
p = q;
|
|
++q;
|
|
}
|
|
|
|
return A*0.5;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setNormal(const cvf::Vec3d& polygonNormal)
|
|
{
|
|
int Z = GeometryTools::findClosestAxis(polygonNormal);
|
|
m_X = (Z + 1) % 3;
|
|
m_Y = (Z + 2) % 3;
|
|
m_polygonNormal = polygonNormal;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setPolygonIndices(const std::list<size_t>& polygon)
|
|
{
|
|
m_polygonIndices = polygon;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setPolygonIndices(const std::vector<size_t>& polygon)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < polygon.size(); ++i)
|
|
{
|
|
m_polygonIndices.push_back(polygon[i]);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setMinTriangleArea(double areaTolerance)
|
|
{
|
|
m_areaTolerance = 2*areaTolerance; // Convert to trapesoidal area
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setGlobalNodeArray(const cvf::Vec3dArray& nodeCoords)
|
|
{
|
|
m_nodeCoords = &nodeCoords;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
FanEarClipTesselator::FanEarClipTesselator() :
|
|
m_centerNodeIndex(std::numeric_limits<size_t>::max())
|
|
{
|
|
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool FanEarClipTesselator::calculateTriangles(std::vector<size_t>* triangles)
|
|
{
|
|
CVF_ASSERT(m_centerNodeIndex != std::numeric_limits<size_t>::max());
|
|
CVF_ASSERT(m_nodeCoords != nullptr);
|
|
CVF_ASSERT(m_X > -1 && m_Y > -1);
|
|
|
|
size_t nv = m_polygonIndices.size();
|
|
|
|
if (nv < 3) return false;
|
|
|
|
// We want m_polygonIndices to be a counter-clockwise polygon to make the validation test work
|
|
|
|
if (calculateProjectedPolygonArea() < 0 )
|
|
{
|
|
m_polygonIndices.reverse();
|
|
}
|
|
|
|
std::list<size_t>::const_iterator it1;
|
|
std::list<size_t>::const_iterator it2;
|
|
|
|
std::list< std::list<size_t> > restPolygons;
|
|
bool wasPreviousTriangleValid = true;
|
|
|
|
for (it1 = m_polygonIndices.begin(); it1 != m_polygonIndices.end(); ++it1)
|
|
{
|
|
it2 = it1;
|
|
++it2;
|
|
|
|
if (it2 == m_polygonIndices.end()) it2 = m_polygonIndices.begin();
|
|
|
|
if (isTriangleValid(*it1, *it2, m_centerNodeIndex))
|
|
{
|
|
triangles->push_back(*it1);
|
|
triangles->push_back(*it2);
|
|
triangles->push_back(m_centerNodeIndex);
|
|
wasPreviousTriangleValid = true;
|
|
}
|
|
else
|
|
{
|
|
if (wasPreviousTriangleValid)
|
|
{
|
|
// Create new rest polygon.
|
|
restPolygons.push_back(std::list<size_t>());
|
|
restPolygons.back().push_back(m_centerNodeIndex);
|
|
restPolygons.back().push_back(*it1);
|
|
restPolygons.back().push_back(*it2);
|
|
}
|
|
else
|
|
{
|
|
restPolygons.back().push_back(*it2);
|
|
}
|
|
}
|
|
}
|
|
|
|
EarClipTesselator triMaker;
|
|
triMaker.setNormal(m_polygonNormal);
|
|
triMaker.setMinTriangleArea(m_areaTolerance);
|
|
triMaker.setGlobalNodeArray(*m_nodeCoords);
|
|
std::list< std::list<size_t> >::iterator rpIt;
|
|
|
|
for (rpIt = restPolygons.begin(); rpIt != restPolygons.end(); ++rpIt)
|
|
{
|
|
triMaker.setPolygonIndices(*rpIt);
|
|
triMaker.calculateTriangles(triangles);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// This needs to be rewritten because we need to test for crossing edges, not only point inside.
|
|
/// In addition the test for polygon
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool FanEarClipTesselator::isTriangleValid(size_t u, size_t v, size_t w)
|
|
{
|
|
CVF_ASSERT(m_X > -1 && m_Y > -1);
|
|
|
|
cvf::Vec3d A = (*m_nodeCoords)[u];
|
|
cvf::Vec3d B = (*m_nodeCoords)[v];
|
|
cvf::Vec3d C = (*m_nodeCoords)[w];
|
|
|
|
if ( m_areaTolerance > (((B[m_X]-A[m_X])*(C[m_Y]-A[m_Y])) - ((B[m_Y]-A[m_Y])*(C[m_X]-A[m_X]))) ) return false;
|
|
|
|
std::list<size_t>::const_iterator c;
|
|
for (c = m_polygonIndices.begin(); c != m_polygonIndices.end(); ++c)
|
|
{
|
|
// The polygon points that actually make up the triangle candidate does not count
|
|
// (but the same points on different positions in the polygon does! )
|
|
// Todo so this test below is to accepting !! Bug !!
|
|
if ( (*c == u) || (*c == v) || (*c == w)) continue;
|
|
|
|
cvf::Vec3d P = (*m_nodeCoords)[*c];
|
|
|
|
if (isPointInsideTriangle(A, B, C, P)) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
}
|