ResInsight/ApplicationCode/ModelVisualization/Intersections/RivIntersectionBoxGeometryGenerator.cpp

470 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RivIntersectionBoxGeometryGenerator.h"
#include "cvfDrawableGeo.h"
#include "cvfPrimitiveSetDirect.h"
#include "cvfPlane.h"
#include <array>
#include "RimIntersectionBox.h"
#include "cvfStructGrid.h"
#include "cafHexGridIntersectionTools/cafHexGridIntersectionTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivIntersectionBoxGeometryGenerator::RivIntersectionBoxGeometryGenerator(RimIntersectionBox* intersectionBox, const RivIntersectionHexGridInterface* grid)
: m_intersectionBoxDefinition(intersectionBox),
m_hexGrid(grid)
{
m_triangleVxes = new cvf::Vec3fArray;
m_cellBorderLineVxes = new cvf::Vec3fArray;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RivIntersectionBoxGeometryGenerator::~RivIntersectionBoxGeometryGenerator()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RivIntersectionBoxGeometryGenerator::isAnyGeometryPresent() const
{
if (m_triangleVxes->size() == 0)
{
return false;
}
else
{
return true;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivIntersectionBoxGeometryGenerator::generateSurface()
{
calculateArrays();
CVF_ASSERT(m_triangleVxes.notNull());
if (m_triangleVxes->size() == 0) return nullptr;
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
geo->setFromTriangleVertexArray(m_triangleVxes.p());
return geo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::DrawableGeo> RivIntersectionBoxGeometryGenerator::createMeshDrawable()
{
if (!(m_cellBorderLineVxes.notNull() && m_cellBorderLineVxes->size() != 0)) return nullptr;
cvf::ref<cvf::DrawableGeo> geo = new cvf::DrawableGeo;
geo->setVertexArray(m_cellBorderLineVxes.p());
cvf::ref<cvf::PrimitiveSetDirect> prim = new cvf::PrimitiveSetDirect(cvf::PT_LINES);
prim->setIndexCount(m_cellBorderLineVxes->size());
geo->addPrimitiveSet(prim.p());
return geo;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RivIntersectionBoxGeometryGenerator::triangleToCellIndex() const
{
CVF_ASSERT(m_triangleVxes->size());
return m_triangleToCellIdxMap;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<RivIntersectionVertexWeights>& RivIntersectionBoxGeometryGenerator::triangleVxToCellCornerInterpolationWeights() const
{
CVF_ASSERT(m_triangleVxes->size());
return m_triVxToCellCornerWeights;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const cvf::Vec3fArray* RivIntersectionBoxGeometryGenerator::triangleVxes() const
{
CVF_ASSERT(m_triangleVxes->size());
return m_triangleVxes.p();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class Box
{
public:
using FaceType = cvf::StructGridInterface::FaceType;
Box(const cvf::Mat4d& origin, const cvf::Vec3d& size) : m_origin(origin), m_size(size) {}
std::array<cvf::Plane, 6> planes()
{
std::array<cvf::Plane, 6> boxPlanes;
boxPlanes[FaceType::POS_I].setFromPointAndNormal( m_origin.translation() + m_size, cvf::Vec3d(m_origin.col(0)));
boxPlanes[FaceType::NEG_I].setFromPointAndNormal( m_origin.translation() , -cvf::Vec3d(m_origin.col(0)));
boxPlanes[FaceType::POS_J].setFromPointAndNormal( m_origin.translation() + m_size, cvf::Vec3d(m_origin.col(1)));
boxPlanes[FaceType::NEG_J].setFromPointAndNormal( m_origin.translation() , -cvf::Vec3d(m_origin.col(1)));
boxPlanes[FaceType::POS_K].setFromPointAndNormal( m_origin.translation() + m_size, cvf::Vec3d(m_origin.col(2)));
boxPlanes[FaceType::NEG_K].setFromPointAndNormal( m_origin.translation() , -cvf::Vec3d(m_origin.col(2)));
return boxPlanes;
}
std::array<cvf::Vec3d, 4> faceCorners(FaceType face)
{
std::array<cvf::Vec3d, 4> corners;
cvf::Vec3d sx = cvf::Vec3d(m_origin.col(0)) * m_size[0] ;
cvf::Vec3d sy = cvf::Vec3d(m_origin.col(1)) * m_size[1] ;
cvf::Vec3d sz = cvf::Vec3d(m_origin.col(2)) * m_size[2] ;
switch(face)
{
case FaceType::POS_I:
corners[0] = m_origin.translation() + sx;
corners[1] = m_origin.translation() + sx + sy;
corners[2] = m_origin.translation() + sx + sy + sz;
corners[3] = m_origin.translation() + sx + sz;
break;
case FaceType::NEG_I:
corners[0] = m_origin.translation();
corners[1] = m_origin.translation() + sz;
corners[2] = m_origin.translation() + sy + sz;
corners[3] = m_origin.translation() + sy;
break;
case FaceType::POS_J:
corners[0] = m_origin.translation() + sy;
corners[1] = m_origin.translation() + sy + sz;
corners[2] = m_origin.translation() + sy + sx + sz;
corners[3] = m_origin.translation() + sy + sx;
break;
case FaceType::NEG_J:
corners[0] = m_origin.translation() ;
corners[1] = m_origin.translation() + sx;
corners[2] = m_origin.translation() + sx + sz;
corners[3] = m_origin.translation() + sz;
break;
case FaceType::POS_K:
corners[0] = m_origin.translation() + sz;
corners[1] = m_origin.translation() + sz + sx;
corners[2] = m_origin.translation() + sz + sx + sy;
corners[3] = m_origin.translation() + sz + sy;
break;
case FaceType::NEG_K:
corners[0] = m_origin.translation();
corners[1] = m_origin.translation() + sy;
corners[2] = m_origin.translation() + sx + sy;
corners[3] = m_origin.translation() + sx;
break;
}
return corners;
}
// Returns the four adjacent faces in the Pos, Neg, Pos, Neg order
std::array<FaceType, 4> adjacentFaces(FaceType face)
{
std::array<FaceType, 4> clipFaces;
FaceType oppFace = cvf::StructGridInterface::oppositeFace(face);
int clipFaceCount = 0;
for (int faceCand = 0; faceCand < 6; ++faceCand )
{
if (faceCand != face && faceCand != oppFace)
{
clipFaces[clipFaceCount] = (FaceType) faceCand;
clipFaceCount++;
}
}
return clipFaces;
}
private:
cvf::Mat4d m_origin;
cvf::Vec3d m_size;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimIntersectionBox* RivIntersectionBoxGeometryGenerator::intersectionBox() const
{
return m_intersectionBoxDefinition;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RivIntersectionBoxGeometryGenerator::calculateArrays()
{
if(m_triangleVxes->size()) return;
std::vector<cvf::Vec3f> triangleVertices;
std::vector<cvf::Vec3f> cellBorderLineVxes;
cvf::Vec3d displayOffset = m_hexGrid->displayOffset();
cvf::BoundingBox gridBBox = m_hexGrid->boundingBox();
Box box(m_intersectionBoxDefinition->boxOrigin(), m_intersectionBoxDefinition->boxSize());
std::array<cvf::Plane, 6> boxPlanes = box.planes();
RimIntersectionBox::SinglePlaneState singlePlane = m_intersectionBoxDefinition->singlePlaneState();
int startFace = 0; int endFace = 5;
if (singlePlane == RimIntersectionBox::PLANE_STATE_X) startFace = endFace = Box::FaceType::POS_I;
if (singlePlane == RimIntersectionBox::PLANE_STATE_Y) startFace = endFace = Box::FaceType::POS_J;
if (singlePlane == RimIntersectionBox::PLANE_STATE_Z) startFace = endFace = Box::FaceType::POS_K;
for (int faceIdx = startFace; faceIdx <= endFace; ++faceIdx)
{
cvf::Plane plane = boxPlanes[faceIdx];
std::array<Box::FaceType, 4> clipFaces = box.adjacentFaces((Box::FaceType)faceIdx);
cvf::Plane p1Plane = boxPlanes[clipFaces[1]];
cvf::Plane p2Plane = boxPlanes[clipFaces[0]];
cvf::Plane p3Plane = boxPlanes[clipFaces[3]];
cvf::Plane p4Plane = boxPlanes[clipFaces[2]];
p1Plane.flip();
p2Plane.flip();
p3Plane.flip();
p4Plane.flip();
std::array<cvf::Vec3d, 4> faceCorners = box.faceCorners((Box::FaceType)faceIdx);
cvf::BoundingBox sectionBBox;
for (cvf::Vec3d& corner : faceCorners) sectionBBox.add(corner);
// Similar code as IntersectionGenerator :
std::vector<size_t> columnCellCandidates;
m_hexGrid->findIntersectingCells(sectionBBox, &columnCellCandidates);
std::vector<caf::HexGridIntersectionTools::ClipVx> hexPlaneCutTriangleVxes;
hexPlaneCutTriangleVxes.reserve(5*3);
std::vector<int> cellFaceForEachTriangleEdge;
cellFaceForEachTriangleEdge.reserve(5*3);
cvf::Vec3d cellCorners[8];
size_t cornerIndices[8];
for(size_t cccIdx = 0; cccIdx < columnCellCandidates.size(); ++cccIdx)
{
size_t globalCellIdx = columnCellCandidates[cccIdx];
if(!m_hexGrid->useCell(globalCellIdx)) continue;
hexPlaneCutTriangleVxes.clear();
m_hexGrid->cellCornerVertices(globalCellIdx, cellCorners);
m_hexGrid->cellCornerIndices(globalCellIdx, cornerIndices);
caf::HexGridIntersectionTools::planeHexIntersectionMC(plane,
cellCorners,
cornerIndices,
&hexPlaneCutTriangleVxes,
&cellFaceForEachTriangleEdge);
std::vector<caf::HexGridIntersectionTools::ClipVx> clippedTriangleVxes_once;
std::vector<int> cellFaceForEachClippedTriangleEdge_once;
caf::HexGridIntersectionTools::clipTrianglesBetweenTwoParallelPlanes(hexPlaneCutTriangleVxes, cellFaceForEachTriangleEdge, p1Plane, p2Plane,
&clippedTriangleVxes_once, &cellFaceForEachClippedTriangleEdge_once);
for (caf::HexGridIntersectionTools::ClipVx& clvx : clippedTriangleVxes_once) if (!clvx.isVxIdsNative) clvx.derivedVxLevel = 0;
std::vector<caf::HexGridIntersectionTools::ClipVx> clippedTriangleVxes;
std::vector<int> cellFaceForEachClippedTriangleEdge;
caf::HexGridIntersectionTools::clipTrianglesBetweenTwoParallelPlanes(clippedTriangleVxes_once, cellFaceForEachClippedTriangleEdge_once, p3Plane, p4Plane,
&clippedTriangleVxes, &cellFaceForEachClippedTriangleEdge);
for (caf::HexGridIntersectionTools::ClipVx& clvx : clippedTriangleVxes) if (!clvx.isVxIdsNative && clvx.derivedVxLevel == -1) clvx.derivedVxLevel = 1;
size_t clippedTriangleCount = clippedTriangleVxes.size()/3;
for(uint tIdx = 0; tIdx < clippedTriangleCount; ++tIdx)
{
uint triVxIdx = tIdx*3;
// Accumulate triangle vertices
cvf::Vec3f p0(clippedTriangleVxes[triVxIdx+0].vx - displayOffset);
cvf::Vec3f p1(clippedTriangleVxes[triVxIdx+1].vx - displayOffset);
cvf::Vec3f p2(clippedTriangleVxes[triVxIdx+2].vx - displayOffset);
triangleVertices.push_back(p0);
triangleVertices.push_back(p1);
triangleVertices.push_back(p2);
// Accumulate mesh lines
#define isFace( faceEnum ) (0 <= faceEnum && faceEnum <= 5 )
if(isFace(cellFaceForEachClippedTriangleEdge[triVxIdx]))
{
cellBorderLineVxes.push_back(p0);
cellBorderLineVxes.push_back(p1);
}
if(isFace(cellFaceForEachClippedTriangleEdge[triVxIdx+1]))
{
cellBorderLineVxes.push_back(p1);
cellBorderLineVxes.push_back(p2);
}
if(isFace(cellFaceForEachClippedTriangleEdge[triVxIdx+2]))
{
cellBorderLineVxes.push_back(p2);
cellBorderLineVxes.push_back(p0);
}
// Mapping to cell index
m_triangleToCellIdxMap.push_back(globalCellIdx);
// Interpolation from nodes
for(int i = 0; i < 3; ++i)
{
caf::HexGridIntersectionTools::ClipVx cvx = clippedTriangleVxes[triVxIdx + i];
if(cvx.isVxIdsNative)
{
m_triVxToCellCornerWeights.push_back(
RivIntersectionVertexWeights(cvx.clippedEdgeVx1Id, cvx.clippedEdgeVx2Id, cvx.normDistFromEdgeVx1));
}
else
{
caf::HexGridIntersectionTools::ClipVx cvx1;
caf::HexGridIntersectionTools::ClipVx cvx2;
if (cvx.derivedVxLevel == 0)
{
cvx1 = hexPlaneCutTriangleVxes[cvx.clippedEdgeVx1Id];
cvx2 = hexPlaneCutTriangleVxes[cvx.clippedEdgeVx2Id];
}
else if(cvx.derivedVxLevel == 1)
{
cvx1 = clippedTriangleVxes_once[cvx.clippedEdgeVx1Id];
cvx2 = clippedTriangleVxes_once[cvx.clippedEdgeVx2Id];
}
else
{
CVF_ASSERT(false);
}
if(cvx1.isVxIdsNative && cvx2.isVxIdsNative)
{
m_triVxToCellCornerWeights.push_back(
RivIntersectionVertexWeights(cvx1.clippedEdgeVx1Id, cvx1.clippedEdgeVx2Id, cvx1.normDistFromEdgeVx1,
cvx2.clippedEdgeVx1Id, cvx2.clippedEdgeVx2Id, cvx2.normDistFromEdgeVx1,
cvx.normDistFromEdgeVx1));
}
else
{
caf::HexGridIntersectionTools::ClipVx cvx11;
caf::HexGridIntersectionTools::ClipVx cvx12;
caf::HexGridIntersectionTools::ClipVx cvx21;
caf::HexGridIntersectionTools::ClipVx cvx22;
if(cvx1.isVxIdsNative)
{
cvx11 = cvx1;
cvx12 = cvx1;
}
else if(cvx1.derivedVxLevel == 0)
{
cvx11 = hexPlaneCutTriangleVxes[cvx1.clippedEdgeVx1Id];
cvx12 = hexPlaneCutTriangleVxes[cvx1.clippedEdgeVx2Id];
}
else if(cvx2.derivedVxLevel == 1)
{
cvx11 = clippedTriangleVxes_once[cvx1.clippedEdgeVx1Id];
cvx12 = clippedTriangleVxes_once[cvx1.clippedEdgeVx2Id];
}
else
{
CVF_ASSERT(false);
}
if(cvx2.isVxIdsNative)
{
cvx21 = cvx2;
cvx22 = cvx2;
}
else if(cvx2.derivedVxLevel == 0)
{
cvx21 = hexPlaneCutTriangleVxes[cvx2.clippedEdgeVx1Id];
cvx22 = hexPlaneCutTriangleVxes[cvx2.clippedEdgeVx2Id];
}
else if(cvx2.derivedVxLevel == 1)
{
cvx21 = clippedTriangleVxes_once[cvx2.clippedEdgeVx1Id];
cvx22 = clippedTriangleVxes_once[cvx2.clippedEdgeVx2Id];
}
else
{
CVF_ASSERT(false);
}
CVF_TIGHT_ASSERT(cvx11.isVxIdsNative && cvx12.isVxIdsNative && cvx21.isVxIdsNative && cvx22.isVxIdsNative);
m_triVxToCellCornerWeights.push_back(
RivIntersectionVertexWeights(cvx11.clippedEdgeVx1Id, cvx11.clippedEdgeVx2Id, cvx11.normDistFromEdgeVx1,
cvx12.clippedEdgeVx1Id, cvx12.clippedEdgeVx2Id, cvx2.normDistFromEdgeVx1,
cvx21.clippedEdgeVx1Id, cvx21.clippedEdgeVx2Id, cvx21.normDistFromEdgeVx1,
cvx22.clippedEdgeVx1Id, cvx22.clippedEdgeVx2Id, cvx22.normDistFromEdgeVx1,
cvx1.normDistFromEdgeVx1,
cvx2.normDistFromEdgeVx1,
cvx.normDistFromEdgeVx1));
}
}
}
}
}
}
m_cellBorderLineVxes->assign(cellBorderLineVxes);
m_triangleVxes->assign(triangleVertices);
}