ResInsight/Fwk/VizFwk/LibCore/cvfObject.h

198 lines
7.9 KiB
C++

//##################################################################################################
//
// Custom Visualization Core library
// Copyright (C) 2011-2013 Ceetron AS
//
// This library may be used under the terms of either the GNU General Public License or
// the GNU Lesser General Public License as follows:
//
// GNU General Public License Usage
// This library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <<http://www.gnu.org/licenses/gpl.html>>
// for more details.
//
// GNU Lesser General Public License Usage
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU Lesser General Public License at <<http://www.gnu.org/licenses/lgpl-2.1.html>>
// for more details.
//
//##################################################################################################
#pragma once
#include "cvfBase.h"
#include "cvfSystem.h"
#include <set>
#include "cvfAtomicCounter.h"
#if !defined(CVF_ATOMIC_COUNTER_CLASS_EXISTS) && !defined(CVF_USE_NON_THREADSAFE_REFERENCE_COUNT)
#error No support for atomics. Define CVF_USE_NON_THREADSAFE_REFERENCE_COUNT to be able to compile
#endif
namespace cvf {
//==================================================================================================
//
// Base class for all reference counted objects
//
//==================================================================================================
class Object
{
public:
inline Object();
inline virtual ~Object();
inline int addRef() const;
inline int release() const;
inline int refCount() const;
// Helpers for debugging, see the CVF_TRACK_ACTIVE_OBJECT_INSTANCES define
static std::set<Object*>* activeObjectInstances();
static void dumpActiveObjectInstances();
private:
#if defined(CVF_USE_NON_THREADSAFE_REFERENCE_COUNT)
mutable int m_refCount;
#elif defined(CVF_ATOMIC_COUNTER_CLASS_EXISTS)
mutable AtomicCounter m_refCount;
#else
#error No support for atomics. Define CVF_USE_NON_THREADSAFE_REFERENCE_COUNT to be able to compile
#endif
CVF_DISABLE_COPY_AND_ASSIGN(Object);
};
//==================================================================================================
//
// Smart pointer class
//
//==================================================================================================
template <typename T>
class ref
{
public:
ref(T* object = NULL);
ref(const ref& other);
template<typename T2> ref(const ref<T2>& other);
~ref();
ref& operator=(T* rhs);
ref& operator=(ref rhs);
template<typename T2> ref& operator=(const ref<T2>& rhs);
inline T* operator->();
inline const T* operator->() const;
inline T& operator*();
inline const T& operator*() const;
inline T* p();
inline const T* p() const;
inline bool isNull() const;
inline bool notNull() const;
bool operator<(const ref& rhs) const;
void swap(ref& other);
private:
T* m_object;
};
/// \relates cvf::ref
/// @{
template<typename T1, typename T2> inline bool operator==(const ref<T1>& a, const ref<T2>& b) { return a.p() == b.p(); } ///< Returns true if the internal pointers of refs \a a and \a b are equal.
template<typename T1, typename T2> inline bool operator!=(const ref<T1>& a, const ref<T2>& b) { return a.p() != b.p(); } ///< Returns true if the internal pointers of refs \a a and \a b are different.
template<typename T1, typename T2> inline bool operator==(const ref<T1>& a, T2* b) { return a.p() == b; } ///< Returns true if the internal pointer of ref \a a is equal to the naked pointer \a b.
template<typename T1, typename T2> inline bool operator!=(const ref<T1>& a, T2* b) { return a.p() != b; } ///< Returns true if the internal pointer of ref \a a is different from the naked pointer \a b.
template<typename T1, typename T2> inline bool operator==(T1* a, const ref<T2>& b) { return a == b.p(); } ///< Returns true if the naked pointer \a a is equal to the internal pointer of ref \a b.
template<typename T1, typename T2> inline bool operator!=(T1* a, const ref<T2>& b) { return a != b.p(); } ///< Returns true if the naked pointer \a a is different from the internal pointer of ref \a b.
/// Swap contents of \a a and \a b. Matches signature of std::swap().
/// \todo Need to investigate which STL algorithms actually utilize the swap() function.
template<typename T> inline void swap(ref<T>& a, ref<T>& b) { a.swap(b); }
/// @}
//==================================================================================================
//
// Smart pointer class for const pointers
//
//==================================================================================================
template <typename T>
class cref
{
public:
cref(const T* object = NULL);
cref(const cref& other);
template<typename T2> cref(const cref<T2>& other);
~cref();
cref& operator=(const T* rhs);
cref& operator=(cref rhs);
template<typename T2> cref& operator=(const cref<T2>& rhs);
inline const T* operator->() const;
inline const T& operator*() const;
inline const T* p() const;
inline bool isNull() const;
inline bool notNull() const;
bool operator<(const cref& rhs) const;
void swap(cref& other);
private:
const T* m_object;
};
/// \relates cvf::cref
/// @{
template<typename T1, typename T2> inline bool operator==(const cref<T1>& a, const cref<T2>& b) { return a.p() == b.p(); } ///< Returns true if the internal pointers of refs \a a and \a b are equal.
template<typename T1, typename T2> inline bool operator!=(const cref<T1>& a, const cref<T2>& b) { return a.p() != b.p(); } ///< Returns true if the internal pointers of refs \a a and \a b are different.
template<typename T1, typename T2> inline bool operator==(const cref<T1>& a, T2* b) { return a.p() == b; } ///< Returns true if the internal pointer of ref \a a is equal to the naked pointer \a b.
template<typename T1, typename T2> inline bool operator!=(const cref<T1>& a, T2* b) { return a.p() != b; } ///< Returns true if the internal pointer of ref \a a is different from the naked pointer \a b.
template<typename T1, typename T2> inline bool operator==(T1* a, const cref<T2>& b) { return a == b.p(); } ///< Returns true if the naked pointer \a a is equal to the internal pointer of ref \a b.
template<typename T1, typename T2> inline bool operator!=(T1* a, const cref<T2>& b) { return a != b.p(); } ///< Returns true if the naked pointer \a a is different from the internal pointer of ref \a b.
//==================================================================================================
//
// Creation of smart pointers.
//
//==================================================================================================
template<typename T, class... Args>
ref<T> make_ref(Args&&... args);
template<typename T, class... Args>
cref<T> make_cref(Args&&... args);
/// @}
}
#include "cvfObject.inl"