ResInsight/ApplicationCode/FileInterface/RifReaderEclipseOutput.cpp

2090 lines
86 KiB
C++
Raw Blame History

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RifReaderEclipseOutput.h"
#include "RiaApplication.h"
#include "RiaLogging.h"
#include "RiaPreferences.h"
#include "RifEclipseInputFileTools.h"
#include "RifEclipseOutputFileTools.h"
#include "RifHdf5ReaderInterface.h"
#include "RifReaderSettings.h"
#ifdef USE_HDF5
#include "RifHdf5Reader.h"
#endif
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigSingleWellResultsData.h"
#include "RigEclipseResultInfo.h"
#include "cafProgressInfo.h"
#include "cvfTrace.h"
#include "ert/ecl/ecl_kw_magic.h"
#include "ert/ecl/ecl_nnc_export.h"
#include "ert/ecl/ecl_nnc_geometry.h"
#include "ert/ecl/ecl_nnc_data.h"
#include <cmath> // Needed for HUGE_VAL on Linux
#include <iostream>
#include <map>
//--------------------------------------------------------------------------------------------------
/// ECLIPSE cell numbering layout:
/// Lower layer: Upper layer
/// Low Depth High Depth
/// Low K High K
/// Shallow Deep
/// 2---3 6---7
/// | | | |
/// 0---1 4---5
///
///
///
//--------------------------------------------------------------------------------------------------
// The indexing conventions for vertices in ECLIPSE
//
// 2-------------3
// /| /|
// / | / | /j
// / | / | /
// 0-------------1 | *---i
// | | | | |
// | 6---------|---7 |
// | / | / |k
// | / | /
// |/ |/
// 4-------------5
// vertex indices
//
// The indexing conventions for vertices in ResInsight
//
// 7-------------6 |k
// /| /| | /j
// / | / | |/
// / | / | *---i
// 4-------------5 |
// | | | |
// | 3---------|---2
// | / | /
// | / | /
// |/ |/
// 0-------------1
// vertex indices
//
static const size_t cellMappingECLRi[8] = { 0, 1, 3, 2, 4, 5, 7, 6 };
//**************************************************************************************************
// Static functions
//**************************************************************************************************
bool transferGridCellData(RigMainGrid* mainGrid, RigActiveCellInfo* activeCellInfo, RigActiveCellInfo* fractureActiveCellInfo, RigGridBase* localGrid, const ecl_grid_type* localEclGrid, size_t matrixActiveStartIndex, size_t fractureActiveStartIndex)
{
CVF_ASSERT(activeCellInfo && fractureActiveCellInfo);
int cellCount = ecl_grid_get_global_size(localEclGrid);
size_t cellStartIndex = mainGrid->globalCellArray().size();
size_t nodeStartIndex = mainGrid->nodes().size();
RigCell defaultCell;
defaultCell.setHostGrid(localGrid);
mainGrid->globalCellArray().resize(cellStartIndex + cellCount, defaultCell);
mainGrid->nodes().resize(nodeStartIndex + cellCount*8, cvf::Vec3d(0,0,0));
int progTicks = 100;
double cellsPrProgressTick = cellCount/(float)progTicks;
caf::ProgressInfo progInfo(progTicks, "");
size_t computedCellCount = 0;
// Loop over cells and fill them with data
#pragma omp parallel for
for (int gridLocalCellIndex = 0; gridLocalCellIndex < cellCount; ++gridLocalCellIndex)
{
RigCell& cell = mainGrid->globalCellArray()[cellStartIndex + gridLocalCellIndex];
cell.setGridLocalCellIndex(gridLocalCellIndex);
// Active cell index
int matrixActiveIndex = ecl_grid_get_active_index1(localEclGrid, gridLocalCellIndex);
if (matrixActiveIndex != -1)
{
activeCellInfo->setCellResultIndex(cellStartIndex + gridLocalCellIndex, matrixActiveStartIndex + matrixActiveIndex);
}
int fractureActiveIndex = ecl_grid_get_active_fracture_index1(localEclGrid, gridLocalCellIndex);
if (fractureActiveIndex != -1)
{
fractureActiveCellInfo->setCellResultIndex(cellStartIndex + gridLocalCellIndex, fractureActiveStartIndex + fractureActiveIndex);
}
// Parent cell index
int parentCellIndex = ecl_grid_get_parent_cell1(localEclGrid, gridLocalCellIndex);
if (parentCellIndex == -1)
{
cell.setParentCellIndex(cvf::UNDEFINED_SIZE_T);
}
else
{
cell.setParentCellIndex(parentCellIndex);
}
// Corner coordinates
int cIdx;
for (cIdx = 0; cIdx < 8; ++cIdx)
{
double * point = mainGrid->nodes()[nodeStartIndex + gridLocalCellIndex * 8 + cellMappingECLRi[cIdx]].ptr();
ecl_grid_get_cell_corner_xyz1(localEclGrid, gridLocalCellIndex, cIdx, &(point[0]), &(point[1]), &(point[2]));
point[2] = -point[2]; // Flipping Z making depth become negative z values
cell.cornerIndices()[cIdx] = nodeStartIndex + gridLocalCellIndex*8 + cIdx;
}
// Sub grid in cell
const ecl_grid_type* subGrid = ecl_grid_get_cell_lgr1(localEclGrid, gridLocalCellIndex);
if (subGrid != NULL)
{
int subGridId = ecl_grid_get_lgr_nr(subGrid);
CVF_ASSERT(subGridId > 0);
cell.setSubGrid(static_cast<RigLocalGrid*>(mainGrid->gridById(subGridId)));
}
// Mark inactive long pyramid looking cells as invalid
// Forslag
//if (!invalid && (cell.isInCoarseCell() || (!cell.isActiveInMatrixModel() && !cell.isActiveInFractureModel()) ) )
cell.setInvalid(cell.isLongPyramidCell());
#pragma omp atomic
computedCellCount++;
progInfo.setProgress((int)(computedCellCount/cellsPrProgressTick));
}
return true;
}
//==================================================================================================
//
// Class RigReaderInterfaceECL
//
//==================================================================================================
//--------------------------------------------------------------------------------------------------
/// Constructor
//--------------------------------------------------------------------------------------------------
RifReaderEclipseOutput::RifReaderEclipseOutput()
{
m_fileName.clear();
m_filesWithSameBaseName.clear();
m_eclipseCase = NULL;
m_ecl_init_file = NULL;
m_dynamicResultsAccess = NULL;
}
//--------------------------------------------------------------------------------------------------
/// Destructor
//--------------------------------------------------------------------------------------------------
RifReaderEclipseOutput::~RifReaderEclipseOutput()
{
if (m_ecl_init_file)
{
ecl_file_close(m_ecl_init_file);
}
m_ecl_init_file = NULL;
if (m_dynamicResultsAccess.notNull())
{
m_dynamicResultsAccess->close();
}
}
//--------------------------------------------------------------------------------------------------
/// Read geometry from file given by name into given reservoir object
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::transferGeometry(const ecl_grid_type* mainEclGrid, RigEclipseCaseData* eclipseCase)
{
CVF_ASSERT(eclipseCase);
if (!mainEclGrid)
{
// Some error
return false;
}
RigActiveCellInfo* activeCellInfo = eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL);
RigActiveCellInfo* fractureActiveCellInfo = eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL);
CVF_ASSERT(activeCellInfo && fractureActiveCellInfo);
RigMainGrid* mainGrid = eclipseCase->mainGrid();
CVF_ASSERT(mainGrid);
{
cvf::Vec3st gridPointDim(0,0,0);
gridPointDim.x() = ecl_grid_get_nx(mainEclGrid) + 1;
gridPointDim.y() = ecl_grid_get_ny(mainEclGrid) + 1;
gridPointDim.z() = ecl_grid_get_nz(mainEclGrid) + 1;
mainGrid->setGridPointDimensions(gridPointDim);
}
// std::string mainGridName = ecl_grid_get_name(mainEclGrid);
// ERT returns file path to grid file as name for main grid
mainGrid->setGridName("Main grid");
// Get and set grid and lgr metadata
size_t totalCellCount = static_cast<size_t>(ecl_grid_get_global_size(mainEclGrid));
int numLGRs = ecl_grid_get_num_lgr(mainEclGrid);
int lgrIdx;
for (lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx)
{
ecl_grid_type* localEclGrid = ecl_grid_iget_lgr(mainEclGrid, lgrIdx);
std::string lgrName = ecl_grid_get_name(localEclGrid);
int lgrId = ecl_grid_get_lgr_nr(localEclGrid);
cvf::Vec3st gridPointDim(0,0,0);
gridPointDim.x() = ecl_grid_get_nx(localEclGrid) + 1;
gridPointDim.y() = ecl_grid_get_ny(localEclGrid) + 1;
gridPointDim.z() = ecl_grid_get_nz(localEclGrid) + 1;
RigLocalGrid* localGrid = new RigLocalGrid(mainGrid);
localGrid->setGridId(lgrId);
mainGrid->addLocalGrid(localGrid);
localGrid->setIndexToStartOfCells(totalCellCount);
localGrid->setGridName(lgrName);
localGrid->setGridPointDimensions(gridPointDim);
totalCellCount += ecl_grid_get_global_size(localEclGrid);
}
activeCellInfo->setReservoirCellCount(totalCellCount);
fractureActiveCellInfo->setReservoirCellCount(totalCellCount);
// Reserve room for the cells and nodes and fill them with data
mainGrid->globalCellArray().reserve(totalCellCount);
mainGrid->nodes().reserve(8*totalCellCount);
caf::ProgressInfo progInfo(3 + numLGRs, "");
progInfo.setProgressDescription("Main Grid");
progInfo.setNextProgressIncrement(3);
transferGridCellData(mainGrid, activeCellInfo, fractureActiveCellInfo, mainGrid, mainEclGrid, 0, 0);
progInfo.setProgress(3);
size_t globalMatrixActiveSize = ecl_grid_get_nactive(mainEclGrid);
size_t globalFractureActiveSize = ecl_grid_get_nactive_fracture(mainEclGrid);
activeCellInfo->setGridCount(1 + numLGRs);
fractureActiveCellInfo->setGridCount(1 + numLGRs);
activeCellInfo->setGridActiveCellCounts(0, globalMatrixActiveSize);
fractureActiveCellInfo->setGridActiveCellCounts(0, globalFractureActiveSize);
transferCoarseningInfo(mainEclGrid, mainGrid);
for (lgrIdx = 0; lgrIdx < numLGRs; ++lgrIdx)
{
progInfo.setProgressDescription("LGR number " + QString::number(lgrIdx+1));
ecl_grid_type* localEclGrid = ecl_grid_iget_lgr(mainEclGrid, lgrIdx);
RigLocalGrid* localGrid = static_cast<RigLocalGrid*>(mainGrid->gridByIndex(lgrIdx+1));
transferGridCellData(mainGrid, activeCellInfo, fractureActiveCellInfo, localGrid, localEclGrid, globalMatrixActiveSize, globalFractureActiveSize);
int matrixActiveCellCount = ecl_grid_get_nactive(localEclGrid);
globalMatrixActiveSize += matrixActiveCellCount;
int fractureActiveCellCount = ecl_grid_get_nactive_fracture(localEclGrid);
globalFractureActiveSize += fractureActiveCellCount;
activeCellInfo->setGridActiveCellCounts(lgrIdx + 1, matrixActiveCellCount);
fractureActiveCellInfo->setGridActiveCellCounts(lgrIdx + 1, fractureActiveCellCount);
transferCoarseningInfo(localEclGrid, localGrid);
progInfo.setProgress(3 + lgrIdx);
}
activeCellInfo->computeDerivedData();
fractureActiveCellInfo->computeDerivedData();
return true;
}
//--------------------------------------------------------------------------------------------------
/// Open file and read geometry into given reservoir object
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::open(const QString& fileName, RigEclipseCaseData* eclipseCase)
{
CVF_ASSERT(eclipseCase);
caf::ProgressInfo progInfo(100, "");
progInfo.setProgressDescription("Reading Grid");
// Get set of files
QStringList fileSet;
if (!RifEclipseOutputFileTools::findSiblingFilesWithSameBaseName(fileName, &fileSet)) return false;
m_fileName = fileName;
progInfo.incrementProgress();
progInfo.setNextProgressIncrement(20);
// Keep the set of files of interest
m_filesWithSameBaseName = fileSet;
// Read geometry
// Todo: Needs to check existence of file before calling ert, else it will abort
ecl_grid_type * mainEclGrid = ecl_grid_alloc( fileName.toAscii().data() );
progInfo.incrementProgress();
progInfo.setNextProgressIncrement(10);
progInfo.setProgressDescription("Transferring grid geometry");
if (!transferGeometry(mainEclGrid, eclipseCase)) return false;
progInfo.incrementProgress();
progInfo.setProgressDescription("Reading faults");
progInfo.setNextProgressIncrement(10);
if (isFaultImportEnabled())
{
cvf::Collection<RigFault> faults;
importFaults(fileSet, &faults);
RigMainGrid* mainGrid = eclipseCase->mainGrid();
mainGrid->setFaults(faults);
}
progInfo.incrementProgress();
m_eclipseCase = eclipseCase;
// Build results meta data
progInfo.setProgressDescription("Reading Result index");
progInfo.setNextProgressIncrement(25);
buildMetaData();
progInfo.incrementProgress();
if (isNNCsEnabled())
{
progInfo.setProgressDescription("Reading NNC data");
progInfo.setNextProgressIncrement(5);
transferStaticNNCData(mainEclGrid, m_ecl_init_file, eclipseCase->mainGrid());
progInfo.incrementProgress();
transferDynamicNNCData(mainEclGrid, eclipseCase->mainGrid());
progInfo.incrementProgress();
progInfo.setProgressDescription("Processing NNC data");
progInfo.setNextProgressIncrement(20);
eclipseCase->mainGrid()->nncData()->processConnections( *(eclipseCase->mainGrid()));
progInfo.incrementProgress();
}
else
{
progInfo.setNextProgressIncrement(25);
progInfo.incrementProgress();
}
progInfo.setNextProgressIncrement(8);
if (!RiaApplication::instance()->preferences()->readerSettings()->skipWellData())
{
progInfo.setProgressDescription("Reading Well information");
readWellCells(mainEclGrid, isImportOfCompleteMswDataEnabled());
}
else
{
RiaLogging::info("Skipping import of simulation well data");
}
progInfo.incrementProgress();
progInfo.setProgressDescription("Releasing reader memory");
ecl_grid_free( mainEclGrid );
progInfo.incrementProgress();
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::setHdf5FileName(const QString& fileName)
{
CVF_ASSERT(m_eclipseCase);
RigCaseCellResultsData* matrixModelResults = m_eclipseCase->results(RiaDefines::MATRIX_MODEL);
CVF_ASSERT(matrixModelResults);
if (fileName.isEmpty())
{
RiaLogging::info("HDF: Removing all existing Sour Sim data ...");
matrixModelResults->eraseAllSourSimData();
return;
}
RiaLogging::info(QString("HDF: Start import of data from : ").arg(fileName));
RiaLogging::info("HDF: Removing all existing Sour Sim data ...");
matrixModelResults->eraseAllSourSimData();
std::vector<RigEclipseTimeStepInfo> timeStepInfos = createFilteredTimeStepInfos();
std::unique_ptr<RifHdf5ReaderInterface> hdf5ReaderInterface;
#ifdef USE_HDF5
hdf5ReaderInterface = std::unique_ptr<RifHdf5ReaderInterface>(new RifHdf5Reader(fileName));
#endif // USE_HDF5
if (!hdf5ReaderInterface)
{
RiaLogging::error("HDF: Failed to import Sour Sim data ");
return;
}
std::vector<QDateTime> sourSimTimeSteps = hdf5ReaderInterface->timeSteps();
if (timeStepInfos.size() > 0)
{
bool isTimeStampsEqual = true;
for (size_t i = 0; i < timeStepInfos.size(); i++)
{
size_t indexOnFile = timeStepIndexOnFile(i);
if (!isEclipseAndSoursimTimeStepsEqual(timeStepInfos[i].m_date, sourSimTimeSteps[indexOnFile]))
{
isTimeStampsEqual = false;
}
}
if (!isTimeStampsEqual) return;
}
else
{
// Use time steps from HDF to define the time steps
QDateTime firstDate = sourSimTimeSteps[0];
std::vector<double> daysSinceSimulationStart;
for (auto d : sourSimTimeSteps)
{
daysSinceSimulationStart.push_back(firstDate.daysTo(d));
}
std::vector<int> reportNumbers;
if (m_dynamicResultsAccess.notNull())
{
reportNumbers = m_dynamicResultsAccess->reportNumbers();
}
else
{
for (size_t i = 0; i < sourSimTimeSteps.size(); i++)
{
reportNumbers.push_back(static_cast<int>(i));
}
}
timeStepInfos = RigEclipseTimeStepInfo::createTimeStepInfos(sourSimTimeSteps, reportNumbers, daysSinceSimulationStart);
}
QStringList resultNames = hdf5ReaderInterface->propertyNames();
for (int i = 0; i < resultNames.size(); ++i)
{
size_t resIndex = matrixModelResults->findOrCreateScalarResultIndex(RiaDefines::SOURSIMRL, resultNames[i], false);
matrixModelResults->setTimeStepInfos(resIndex, timeStepInfos);
}
m_hdfReaderInterface = std::move(hdf5ReaderInterface);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::setFileDataAccess(RifEclipseRestartDataAccess* restartDataAccess)
{
m_dynamicResultsAccess = restartDataAccess;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::importFaults(const QStringList& fileSet, cvf::Collection<RigFault>* faults)
{
if (this->filenamesWithFaults().size() > 0)
{
for (size_t i = 0; i < this->filenamesWithFaults().size(); i++)
{
QString faultFilename = this->filenamesWithFaults()[i];
RifEclipseInputFileTools::parseAndReadFaults(faultFilename, faults);
}
}
else
{
foreach(QString fname, fileSet)
{
if (fname.endsWith(".DATA"))
{
std::vector<QString> filenamesWithFaults;
RifEclipseInputFileTools::readFaultsInGridSection(fname, faults, &filenamesWithFaults, faultIncludeFileAbsolutePathPrefix());
std::sort(filenamesWithFaults.begin(), filenamesWithFaults.end());
std::vector<QString>::iterator last = std::unique(filenamesWithFaults.begin(), filenamesWithFaults.end());
filenamesWithFaults.erase(last, filenamesWithFaults.end());
this->setFilenamesWithFaults(filenamesWithFaults);
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::transferStaticNNCData(const ecl_grid_type* mainEclGrid , ecl_file_type* init_file, RigMainGrid* mainGrid)
{
if (!m_ecl_init_file ) return;
CVF_ASSERT(mainEclGrid && mainGrid);
// Get the data from ERT
ecl_nnc_geometry_type* nnc_geo = ecl_nnc_geometry_alloc(mainEclGrid);
ecl_nnc_data_type* tran_data = ecl_nnc_data_alloc_tran(mainEclGrid, nnc_geo, ecl_file_get_global_view(init_file));
int numNNC = ecl_nnc_data_get_size(tran_data);
int geometrySize = ecl_nnc_geometry_size(nnc_geo);
CVF_ASSERT(numNNC == geometrySize);
if (numNNC > 0)
{
// Transform to our own data structures
mainGrid->nncData()->connections().resize(numNNC);
std::vector<double>& transmissibilityValues = mainGrid->nncData()->makeStaticConnectionScalarResult(RigNNCData::propertyNameCombTrans());
const double* transValues = ecl_nnc_data_get_values(tran_data);
for (int nIdx = 0; nIdx < numNNC; ++nIdx)
{
const ecl_nnc_pair_type* geometry_pair = ecl_nnc_geometry_iget(nnc_geo, nIdx);
RigGridBase* grid1 = mainGrid->gridByIndex(geometry_pair->grid_nr1);
mainGrid->nncData()->connections()[nIdx].m_c1GlobIdx = grid1->reservoirCellIndex(geometry_pair->global_index1);
RigGridBase* grid2 = mainGrid->gridByIndex(geometry_pair->grid_nr2);
mainGrid->nncData()->connections()[nIdx].m_c2GlobIdx = grid2->reservoirCellIndex(geometry_pair->global_index2);
transmissibilityValues[nIdx] = transValues[nIdx];
}
}
ecl_nnc_geometry_free(nnc_geo);
ecl_nnc_data_free(tran_data);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::transferDynamicNNCData(const ecl_grid_type* mainEclGrid, RigMainGrid* mainGrid)
{
CVF_ASSERT(mainEclGrid && mainGrid);
if (m_dynamicResultsAccess.isNull()) return;
size_t timeStepCount = m_dynamicResultsAccess->timeStepCount();
std::vector< std::vector<double> >& waterFluxData = mainGrid->nncData()->makeDynamicConnectionScalarResult(RigNNCData::propertyNameFluxWat(), timeStepCount);
std::vector< std::vector<double> >& oilFluxData = mainGrid->nncData()->makeDynamicConnectionScalarResult(RigNNCData::propertyNameFluxOil(), timeStepCount);
std::vector< std::vector<double> >& gasFluxData = mainGrid->nncData()->makeDynamicConnectionScalarResult(RigNNCData::propertyNameFluxGas(), timeStepCount);
for (size_t timeStep = 0; timeStep < timeStepCount; ++timeStep)
{
m_dynamicResultsAccess->dynamicNNCResults(mainEclGrid, timeStep, &waterFluxData[timeStep], &oilFluxData[timeStep], &gasFluxData[timeStep]);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::openAndReadActiveCellData(const QString& fileName, const std::vector<QDateTime>& mainCaseTimeSteps, RigEclipseCaseData* eclipseCase)
{
CVF_ASSERT(eclipseCase);
// It is required to have a main grid before reading active cell data
if (!eclipseCase->mainGrid())
{
return false;
}
// Get set of files
QStringList fileSet;
if (!RifEclipseOutputFileTools::findSiblingFilesWithSameBaseName(fileName, &fileSet)) return false;
// Keep the set of files of interest
m_filesWithSameBaseName = fileSet;
m_eclipseCase = eclipseCase;
if (!readActiveCellInfo())
{
return false;
}
ensureDynamicResultAccessIsPresent();
if (m_dynamicResultsAccess.notNull())
{
m_dynamicResultsAccess->setTimeSteps(mainCaseTimeSteps);
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
/// See also RigStatistics::computeActiveCellUnion()
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::readActiveCellInfo()
{
CVF_ASSERT(m_eclipseCase);
CVF_ASSERT(m_eclipseCase->mainGrid());
QString egridFileName = RifEclipseOutputFileTools::firstFileNameOfType(m_filesWithSameBaseName, ECL_EGRID_FILE);
if (egridFileName.size() > 0)
{
ecl_file_type* ecl_file = ecl_file_open(egridFileName.toAscii().data(), ECL_FILE_CLOSE_STREAM);
if (!ecl_file) return false;
int actnumKeywordCount = ecl_file_get_num_named_kw(ecl_file, ACTNUM_KW);
if (actnumKeywordCount > 0)
{
std::vector<std::vector<int> > actnumValuesPerGrid;
actnumValuesPerGrid.resize(actnumKeywordCount);
size_t reservoirCellCount = 0;
for (size_t gridIdx = 0; gridIdx < static_cast<size_t>(actnumKeywordCount); gridIdx++)
{
RifEclipseOutputFileTools::keywordData(ecl_file, ACTNUM_KW, gridIdx, &actnumValuesPerGrid[gridIdx]);
reservoirCellCount += actnumValuesPerGrid[gridIdx].size();
}
// Check if number of cells is matching
if (m_eclipseCase->mainGrid()->globalCellArray().size() != reservoirCellCount)
{
return false;
}
RigActiveCellInfo* activeCellInfo = m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL);
RigActiveCellInfo* fractureActiveCellInfo = m_eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL);
activeCellInfo->setReservoirCellCount(reservoirCellCount);
fractureActiveCellInfo->setReservoirCellCount(reservoirCellCount);
activeCellInfo->setGridCount(actnumKeywordCount);
fractureActiveCellInfo->setGridCount(actnumKeywordCount);
size_t cellIdx = 0;
size_t globalActiveMatrixIndex = 0;
size_t globalActiveFractureIndex = 0;
for (size_t gridIdx = 0; gridIdx < static_cast<size_t>(actnumKeywordCount); gridIdx++)
{
size_t activeMatrixIndex = 0;
size_t activeFractureIndex = 0;
std::vector<int>& actnumValues = actnumValuesPerGrid[gridIdx];
for (size_t i = 0; i < actnumValues.size(); i++)
{
if (actnumValues[i] == 1 || actnumValues[i] == 3)
{
activeCellInfo->setCellResultIndex(cellIdx, globalActiveMatrixIndex++);
activeMatrixIndex++;
}
if (actnumValues[i] == 2 || actnumValues[i] == 3)
{
fractureActiveCellInfo->setCellResultIndex(cellIdx, globalActiveFractureIndex++);
activeFractureIndex++;
}
cellIdx++;
}
activeCellInfo->setGridActiveCellCounts(gridIdx, activeMatrixIndex);
fractureActiveCellInfo->setGridActiveCellCounts(gridIdx, activeFractureIndex);
}
activeCellInfo->computeDerivedData();
fractureActiveCellInfo->computeDerivedData();
}
ecl_file_close(ecl_file);
return true;
}
return false;
}
//--------------------------------------------------------------------------------------------------
/// Build meta data - get states and results info
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::buildMetaData()
{
CVF_ASSERT(m_eclipseCase);
CVF_ASSERT(m_filesWithSameBaseName.size() > 0);
caf::ProgressInfo progInfo(m_filesWithSameBaseName.size() + 3,"");
progInfo.setNextProgressIncrement(m_filesWithSameBaseName.size());
RigCaseCellResultsData* matrixModelResults = m_eclipseCase->results(RiaDefines::MATRIX_MODEL);
RigCaseCellResultsData* fractureModelResults = m_eclipseCase->results(RiaDefines::FRACTURE_MODEL);
std::vector<RigEclipseTimeStepInfo> timeStepInfos;
// Create access object for dynamic results
ensureDynamicResultAccessIsPresent();
if (m_dynamicResultsAccess.notNull())
{
m_dynamicResultsAccess->open();
progInfo.incrementProgress();
timeStepInfos = createFilteredTimeStepInfos();
QStringList resultNames;
std::vector<size_t> resultNamesDataItemCounts;
m_dynamicResultsAccess->resultNames(&resultNames, &resultNamesDataItemCounts);
{
QStringList matrixResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL),
m_eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL),
RiaDefines::MATRIX_MODEL, m_dynamicResultsAccess->timeStepCount());
for (int i = 0; i < matrixResultNames.size(); ++i)
{
size_t resIndex = matrixModelResults->findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, matrixResultNames[i], false);
matrixModelResults->setTimeStepInfos(resIndex, timeStepInfos);
}
}
{
QStringList fractureResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL),
m_eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL),
RiaDefines::FRACTURE_MODEL, m_dynamicResultsAccess->timeStepCount());
for (int i = 0; i < fractureResultNames.size(); ++i)
{
size_t resIndex = fractureModelResults->findOrCreateScalarResultIndex(RiaDefines::DYNAMIC_NATIVE, fractureResultNames[i], false);
fractureModelResults->setTimeStepInfos(resIndex, timeStepInfos);
}
}
// Default units type is METRIC
RiaEclipseUnitTools::UnitSystem unitsType = RiaEclipseUnitTools::UNITS_METRIC;
{
int unitsTypeValue = m_dynamicResultsAccess->readUnitsType();
if (unitsTypeValue == 2)
{
unitsType = RiaEclipseUnitTools::UNITS_FIELD;
}
else if (unitsTypeValue == 3)
{
unitsType = RiaEclipseUnitTools::UNITS_LAB;
}
}
m_eclipseCase->setUnitsType(unitsType);
}
progInfo.incrementProgress();
openInitFile();
progInfo.incrementProgress();
if (m_ecl_init_file)
{
QStringList resultNames;
std::vector<size_t> resultNamesDataItemCounts;
std::vector< ecl_file_type* > filesUsedToFindAvailableKeywords;
filesUsedToFindAvailableKeywords.push_back(m_ecl_init_file);
RifEclipseOutputFileTools::findKeywordsAndItemCount(filesUsedToFindAvailableKeywords, &resultNames, &resultNamesDataItemCounts);
std::vector<RigEclipseTimeStepInfo> staticTimeStepInfo;
if (!timeStepInfos.empty())
{
staticTimeStepInfo.push_back(timeStepInfos.front());
}
{
QStringList matrixResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL),
m_eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL),
RiaDefines::MATRIX_MODEL, 1);
// Add ACTNUM
matrixResultNames += "ACTNUM";
for (int i = 0; i < matrixResultNames.size(); ++i)
{
size_t resIndex = matrixModelResults->findOrCreateScalarResultIndex(RiaDefines::STATIC_NATIVE, matrixResultNames[i], false);
matrixModelResults->setTimeStepInfos(resIndex, staticTimeStepInfo);
}
}
{
QStringList fractureResultNames = validKeywordsForPorosityModel(resultNames, resultNamesDataItemCounts,
m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL),
m_eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL),
RiaDefines::FRACTURE_MODEL, 1);
// Add ACTNUM
fractureResultNames += "ACTNUM";
for (int i = 0; i < fractureResultNames.size(); ++i)
{
size_t resIndex = fractureModelResults->findOrCreateScalarResultIndex(RiaDefines::STATIC_NATIVE, fractureResultNames[i], false);
fractureModelResults->setTimeStepInfos(resIndex, staticTimeStepInfo);
}
}
}
}
//--------------------------------------------------------------------------------------------------
/// Create results access object (.UNRST or .X0001 ... .XNNNN)
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::ensureDynamicResultAccessIsPresent()
{
if (m_dynamicResultsAccess.isNull())
{
m_dynamicResultsAccess = RifEclipseOutputFileTools::createDynamicResultAccess(m_fileName);
}
}
//--------------------------------------------------------------------------------------------------
/// Get all values of a given static result as doubles
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::staticResult(const QString& result, RiaDefines::PorosityModelType matrixOrFracture, std::vector<double>* values)
{
CVF_ASSERT(values);
if (result.compare("ACTNUM", Qt::CaseInsensitive) == 0)
{
RigActiveCellInfo* activeCellInfo = m_eclipseCase->activeCellInfo(matrixOrFracture);
values->resize(activeCellInfo->reservoirActiveCellCount(), 1.0);
return true;
}
openInitFile();
if(m_ecl_init_file)
{
std::vector<double> fileValues;
size_t numOccurrences = ecl_file_get_num_named_kw(m_ecl_init_file, result.toAscii().data());
size_t i;
for (i = 0; i < numOccurrences; i++)
{
std::vector<double> partValues;
RifEclipseOutputFileTools::keywordData(m_ecl_init_file, result, i, &partValues);
fileValues.insert(fileValues.end(), partValues.begin(), partValues.end());
}
extractResultValuesBasedOnPorosityModel(matrixOrFracture, values, fileValues);
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::sourSimRlResult(const QString& result, size_t stepIndex, std::vector<double>* values)
{
values->clear();
if ( !m_hdfReaderInterface ) return;
if ( m_eclipseCase->mainGrid()->gridCount() == 0 )
{
RiaLogging::error("No grids available");
return ;
}
size_t activeCellCount = cvf::UNDEFINED_SIZE_T;
{
RigActiveCellInfo* fracActCellInfo = m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL);
fracActCellInfo->gridActiveCellCounts(0, activeCellCount);
}
size_t fileIndex = timeStepIndexOnFile(stepIndex);
m_hdfReaderInterface->dynamicResult(result, fileIndex, values);
if (activeCellCount != values->size())
{
values->clear();
RiaLogging::error("SourSimRL results does not match the number of active cells in the grid");
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QDateTime> RifReaderEclipseOutput::allTimeSteps() const
{
std::vector<QDateTime> steps;
if (m_dynamicResultsAccess.notNull())
{
std::vector<double> dymmy;
m_dynamicResultsAccess->timeSteps(&steps, &dymmy);
}
return steps;
}
//--------------------------------------------------------------------------------------------------
/// Get dynamic result at given step index. Will concatenate values for the main grid and all sub grids.
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::dynamicResult(const QString& result, RiaDefines::PorosityModelType matrixOrFracture, size_t stepIndex, std::vector<double>* values)
{
ensureDynamicResultAccessIsPresent();
if (m_dynamicResultsAccess.notNull())
{
size_t indexOnFile = timeStepIndexOnFile(stepIndex);
std::vector<double> fileValues;
if (!m_dynamicResultsAccess->results(result, indexOnFile, m_eclipseCase->mainGrid()->gridCount(), &fileValues))
{
return false;
}
extractResultValuesBasedOnPorosityModel(matrixOrFracture, values, fileValues);
}
return true;
}
//--------------------------------------------------------------------------------------------------
/// Helper struct to store info on how a well-to-grid connection contributes to the position of
/// well segments without any connections.
//--------------------------------------------------------------------------------------------------
struct SegmentPositionContribution
{
SegmentPositionContribution( int connectionSegmentId,
cvf::Vec3d connectionPosition,
double lengthFromConnection,
bool isInsolating,
int segmentIdUnder,
int segmentIdAbove,
bool isFromAbove)
: m_connectionSegmentId(connectionSegmentId),
m_lengthFromConnection(lengthFromConnection),
m_isInsolating(isInsolating),
m_connectionPosition(connectionPosition),
m_segmentIdUnder(segmentIdUnder),
m_segmentIdAbove(segmentIdAbove),
m_isFromAbove(isFromAbove)
{}
int m_connectionSegmentId;
double m_lengthFromConnection;
bool m_isInsolating;
cvf::Vec3d m_connectionPosition;
int m_segmentIdUnder;
int m_segmentIdAbove;
bool m_isFromAbove;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultPoint RifReaderEclipseOutput::createWellResultPoint(const RigGridBase* grid, const well_conn_type* ert_connection, int ertBranchId, int ertSegmentId, const char* wellName)
{
CVF_ASSERT(ert_connection);
CVF_ASSERT(grid);
int cellI = well_conn_get_i( ert_connection );
int cellJ = well_conn_get_j( ert_connection );
int cellK = well_conn_get_k( ert_connection );
bool isCellOpen = well_conn_open( ert_connection );
double volumeRate = well_conn_get_volume_rate( ert_connection);
double oilRate = well_conn_get_oil_rate(ert_connection) ;
double gasRate = well_conn_get_gas_rate(ert_connection);
double waterRate = well_conn_get_water_rate(ert_connection);
// If a well is defined in fracture region, the K-value is from (cellCountK - 1) -> cellCountK*2 - 1
// Adjust K so index is always in valid grid region
if (cellK >= static_cast<int>(grid->cellCountK()))
{
cellK -= static_cast<int>(grid->cellCountK());
}
// See description for keyword ICON at page 54/55 of Rile Formats Reference Manual 2010.2
/*
Integer completion data array
ICON(NICONZ,NCWMAX,NWELLS) with dimensions
defined by INTEHEAD. The following items are required for each completion in each well:
Item 1 - Well connection index ICON(1,IC,IWELL) = IC (set to -IC if connection is not in current LGR)
Item 2 - I-coordinate (<= 0 if not in this LGR)
Item 3 - J-coordinate (<= 0 if not in this LGR)
Item 4 - K-coordinate (<= 0 if not in this LGR)
Item 6 - Connection status > 0 open, <= 0 shut
Item 14 - Penetration direction (1=x, 2=y, 3=z, 4=fractured in x-direction, 5=fractured in y-direction)
If undefined or zero, assume Z
Item 15 - Segment number containing connection (for multi-segment wells, =0 for ordinary wells)
Undefined items in this array may be set to zero.
*/
// The K value might also be -1. It is not yet known why, or what it is supposed to mean,
// but for now we will interpret as 0.
// TODO: Ask Joakim Haave regarding this.
if (cellK < 0)
{
//cvf::Trace::show("Well Connection for grid " + cvf::String(grid->gridName()) + "\n - Detected negative K value (K=" + cvf::String(cellK) + ") for well : " + cvf::String(wellName) + " K clamped to 0");
cellK = 0;
}
RigWellResultPoint resultPoint;
// Introduced based on discussion with H<>kon H<>gst<73>l 08.09.2016
if (cellK >= static_cast<int>(grid->cellCountK()))
{
int maxCellK = static_cast<int>(grid->cellCountK());
cvf::Trace::show("Well Connection for grid " + cvf::String(grid->gridName()) + "\n - Ignored connection with invalid K value (K=" + cvf::String(cellK) + ", max K = " + cvf::String(maxCellK) + ") for well : " + cvf::String(wellName));
}
else
{
resultPoint.m_gridIndex = grid->gridIndex();
resultPoint.m_gridCellIndex = grid->cellIndexFromIJK(cellI, cellJ, cellK);
resultPoint.m_isOpen = isCellOpen;
resultPoint.m_ertBranchId = ertBranchId;
resultPoint.m_ertSegmentId = ertSegmentId;
resultPoint.m_flowRate = volumeRate;
resultPoint.m_oilRate = oilRate;
resultPoint.m_waterRate = waterRate;
/// Unit conversion for use with Well Allocation plots
// Convert Gas to oil equivalents
// If field unit, the Gas is in Mega ft^3 while the others are in [stb] (barrel)
// Unused Gas to Barrel conversion
// we convert gas to stb as well. Based on
// 1 [stb] = 0.15898729492800007 [m^3]
// 1 [ft] = 0.3048 [m]
// megaFt3ToStbFactor = 1.0 / (1.0e-6 * 0.15898729492800007 * ( 1.0 / 0.3048 )^3 )
// double megaFt3ToStbFactor = 178107.60668;
double fieldGasToOilEquivalent = 1.0e6/5800; // Mega ft^3 to BOE
double metricGasToOilEquivalent = 1.0/1.0e3; // Sm^3 Gas to Sm^3 oe
if (m_eclipseCase->unitsType() == RiaEclipseUnitTools::UNITS_FIELD) gasRate = fieldGasToOilEquivalent * gasRate;
if (m_eclipseCase->unitsType() == RiaEclipseUnitTools::UNITS_METRIC) gasRate = metricGasToOilEquivalent * gasRate;
resultPoint.m_gasRate = gasRate;
}
return resultPoint;
}
//--------------------------------------------------------------------------------------------------
/// Inverse distance interpolation of the supplied points and distance weights for
/// the contributing points which are closest above, and closest below
//--------------------------------------------------------------------------------------------------
cvf::Vec3d interpolate3DPosition(const std::vector<SegmentPositionContribution>& positions)
{
std::vector<SegmentPositionContribution> filteredPositions;
filteredPositions.reserve(positions.size());
double minDistFromContribAbove = HUGE_VAL;
double minDistFromContribBelow = HUGE_VAL;
std::vector<SegmentPositionContribution> contrFromAbove;
std::vector<SegmentPositionContribution> contrFromBelow;
for (size_t i = 0; i < positions.size(); i++)
{
if (positions[i].m_connectionPosition != cvf::Vec3d::UNDEFINED)
{
if (positions[i].m_isFromAbove && positions[i].m_lengthFromConnection < minDistFromContribAbove)
{
if (contrFromAbove.size()) contrFromAbove[0] = positions[i];
else contrFromAbove.push_back(positions[i]);
minDistFromContribAbove = positions[i].m_lengthFromConnection;
}
if (! positions[i].m_isFromAbove && positions[i].m_lengthFromConnection < minDistFromContribBelow)
{
if (contrFromBelow.size()) contrFromBelow[0] = positions[i];
else contrFromBelow.push_back(positions[i]);
minDistFromContribBelow = positions[i].m_lengthFromConnection;
}
}
}
filteredPositions = contrFromAbove;
filteredPositions.insert(filteredPositions.end(), contrFromBelow.begin(), contrFromBelow.end());
std::vector<double> nominators(filteredPositions.size(), 0.0);
double denominator = 0.0;
cvf::Vec3d interpolatedValue = cvf::Vec3d::ZERO;
for (size_t i = 0; i < filteredPositions.size(); i++)
{
#if 0 // Pure average test
nominators[i] = 1.0;
#else
double distance = filteredPositions[i].m_lengthFromConnection;
if (distance < 1e-6)
{
return filteredPositions[i].m_connectionPosition;
}
else if (distance < 1.0)
{
//distance = 1.0;
}
distance = 1.0 / distance;
nominators[i] = distance;
denominator += distance;
#endif
}
#if 0 // Pure average test
denominator = positions.size(); // Pure average test
#endif
for (size_t i = 0; i < filteredPositions.size(); i++)
{
interpolatedValue += (nominators[i]/denominator) * filteredPositions[i].m_connectionPosition;
}
return interpolatedValue;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void propagatePosContribDownwards(std::map<int, std::vector<SegmentPositionContribution> > & segmentIdToPositionContrib,
const well_segment_collection_type * allErtSegments,
int ertSegmentId,
std::vector<SegmentPositionContribution> posContrib)
{
std::map<int, std::vector<SegmentPositionContribution> >::iterator posContribIt;
posContribIt = segmentIdToPositionContrib.find(ertSegmentId);
if ( posContribIt != segmentIdToPositionContrib.end())
{
// Create a set of the segments below this, that has to be followed.
std::set<int> segmentIdsBelow;
for (size_t i = 0 ; i < posContribIt->second.size(); ++i)
{
segmentIdsBelow.insert(posContribIt->second[i].m_segmentIdUnder);
}
// Get the segment length to add to the contributions
well_segment_type *segment = well_segment_collection_get( allErtSegments , posContribIt->first);
double sementLength = well_segment_get_length(segment);
// If we do not have the contribution represented, add it, and accumulate the length
// If it is already present, do not touch
for (size_t i = 0; i < posContrib.size(); ++i)
{
bool foundContribution = false;
for (size_t j = 0 ; j < posContribIt->second.size(); ++j)
{
if (posContribIt->second[j].m_connectionSegmentId == posContrib[i].m_connectionSegmentId)
{
foundContribution = true;
break;
}
}
if (! foundContribution)
{
posContrib[i].m_lengthFromConnection += sementLength;
posContrib[i].m_isFromAbove = true;
posContribIt->second.push_back(posContrib[i]);
}
posContrib[i].m_segmentIdAbove = ertSegmentId;
}
for (std::set<int>::iterator it = segmentIdsBelow.begin(); it != segmentIdsBelow.end(); ++it)
{
propagatePosContribDownwards(segmentIdToPositionContrib, allErtSegments, (*it), posContrib);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::readWellCells(const ecl_grid_type* mainEclGrid, bool importCompleteMswData)
{
CVF_ASSERT(m_eclipseCase);
if (m_dynamicResultsAccess.isNull()) return;
well_info_type* ert_well_info = well_info_alloc(mainEclGrid);
if (!ert_well_info) return;
m_dynamicResultsAccess->readWellData(ert_well_info, importCompleteMswData);
std::vector<double> daysSinceSimulationStart;
std::vector<QDateTime> timeSteps;
m_dynamicResultsAccess->timeSteps(&timeSteps, &daysSinceSimulationStart);
std::vector<int> reportNumbers = m_dynamicResultsAccess->reportNumbers();
bool sameCount = false;
if (timeSteps.size() == reportNumbers.size())
{
sameCount = true;
}
std::vector<RigGridBase*> grids;
m_eclipseCase->allGrids(&grids);
cvf::Collection<RigSingleWellResultsData> wells;
caf::ProgressInfo progress(well_info_get_num_wells(ert_well_info), "");
int wellIdx;
for (wellIdx = 0; wellIdx < well_info_get_num_wells(ert_well_info); wellIdx++)
{
const char* wellName = well_info_iget_well_name(ert_well_info, wellIdx);
CVF_ASSERT(wellName);
cvf::ref<RigSingleWellResultsData> wellResults = new RigSingleWellResultsData;
wellResults->m_wellName = wellName;
well_ts_type* ert_well_time_series = well_info_get_ts(ert_well_info , wellName);
int timeStepCount = well_ts_get_size(ert_well_time_series);
wellResults->m_wellCellsTimeSteps.resize(timeStepCount);
int timeIdx;
for (timeIdx = 0; timeIdx < timeStepCount; timeIdx++)
{
well_state_type* ert_well_state = well_ts_iget_state(ert_well_time_series, timeIdx);
RigWellResultFrame& wellResFrame = wellResults->m_wellCellsTimeSteps[timeIdx];
// Build timestamp for well
bool haveFoundTimeStamp = false;
if (sameCount)
{
int reportNr = well_state_get_report_nr(ert_well_state);
for (size_t i = 0; i < reportNumbers.size(); i++)
{
if (reportNumbers[i] == reportNr)
{
wellResFrame.m_timestamp = timeSteps[i];
haveFoundTimeStamp = true;
}
}
}
if (!haveFoundTimeStamp)
{
// This fallback will not work for timesteps before 1970.
// Also see RifEclipseOutputFileAccess::timeStepsText for accessing time_t structures
time_t stepTime = well_state_get_sim_time(ert_well_state);
wellResFrame.m_timestamp = QDateTime::fromTime_t(stepTime);
}
// Production type
well_type_enum ert_well_type = well_state_get_type(ert_well_state);
if (ert_well_type == ERT_PRODUCER)
{
wellResFrame.m_productionType = RigWellResultFrame::PRODUCER;
}
else if (ert_well_type == ERT_WATER_INJECTOR)
{
wellResFrame.m_productionType = RigWellResultFrame::WATER_INJECTOR;
}
else if (ert_well_type == ERT_GAS_INJECTOR)
{
wellResFrame.m_productionType = RigWellResultFrame::GAS_INJECTOR;
}
else if (ert_well_type == ERT_OIL_INJECTOR)
{
wellResFrame.m_productionType = RigWellResultFrame::OIL_INJECTOR;
}
else
{
wellResFrame.m_productionType = RigWellResultFrame::UNDEFINED_PRODUCTION_TYPE;
}
wellResFrame.m_isOpen = well_state_is_open( ert_well_state );
if (importCompleteMswData && well_state_is_MSW(ert_well_state))
{
wellResults->setMultiSegmentWell(true);
// how do we handle LGR-s ?
// 1. Create separate visual branches for each Grid, with its own wellhead
// 2. Always use the connections to the grid with the highest number (innermost LGR).
// 3. Handle both and switch between them according to visual settings of grid visualization
// Will there ever exist connections to different grids for the same segment ?
// We have currently selected 2.
// Set the wellhead
int lastGridNr = static_cast<int>(grids.size()) - 1;
for (int gridNr = lastGridNr; gridNr >= 0; --gridNr)
{
// If several grids have a wellhead definition for this well, we use the last one.
// (Possibly the innermost LGR)
const well_conn_type* ert_wellhead = well_state_iget_wellhead(ert_well_state, static_cast<int>(gridNr));
if (ert_wellhead)
{
wellResFrame.m_wellHead = createWellResultPoint(grids[gridNr], ert_wellhead, -1, -1, wellName);
// HACK: Ert returns open as "this is equally wrong as closed for well heads".
// Well heads are not open jfr mail communication with HHGS and JH Statoil 07.01.2016
wellResFrame.m_wellHead.m_isOpen = false;
break;
}
}
well_branch_collection_type* branches = well_state_get_branches(ert_well_state);
int branchCount = well_branch_collection_get_size(branches);
wellResFrame.m_wellResultBranches.resize( branchCount);
std::map<int, std::vector<SegmentPositionContribution> > segmentIdToPositionContrib;
std::vector<int> upperSegmentIdsOfUnpositionedSegementGroup;
// For each branch, go from bottom segment upwards and transfer their connections to WellResultpoints.
// If they have no connections, create a resultpoint representing their bottom position, which will
// receive an actual position at a later stage.
// I addition, distribute contributions for calculating segment bottom positions from bottom and up.
for (int bIdx = 0; bIdx < well_branch_collection_get_size(branches); bIdx++)
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[ bIdx];
const well_segment_type* segment = well_branch_collection_iget_start_segment(branches, bIdx);
int branchId = well_segment_get_branch_id(segment);
wellResultBranch.m_ertBranchId = branchId;
// Data for segment position calculation
int lastConnectionSegmentId = -1;
cvf::Vec3d lastConnectionPos = cvf::Vec3d::UNDEFINED;
cvf::Vec3d lastConnectionCellCorner= cvf::Vec3d::UNDEFINED;
double lastConnectionCellSize = 0;
double accLengthFromLastConnection = 0;
int segmentIdBelow = -1;
bool segmentBelowHasConnections = false;
while (segment && branchId == well_segment_get_branch_id(segment))
{
// Loop backwards, making us select the connection in the innermost lgr as the truth
bool segmentHasConnections = false;
for (int gridNr = lastGridNr; gridNr >= 0; --gridNr)
{
std::string gridName = this->ertGridName(gridNr);
// If this segment has connections in any grid, transfer the innermost ones
if (well_segment_has_grid_connections(segment, gridName.data()))
{
const well_conn_collection_type* connections = well_segment_get_connections(segment, gridName.data());
int connectionCount = well_conn_collection_get_size(connections);
// Loop backwards to put the deepest connections first in the array. (The segments are also traversed deep to shallow)
for (int connIdx = connectionCount-1; connIdx >= 0; connIdx--)
{
well_conn_type* ert_connection = well_conn_collection_iget(connections, connIdx);
wellResultBranch.m_branchResultPoints.push_back(
createWellResultPoint(grids[gridNr], ert_connection, branchId, well_segment_get_id(segment), wellName));
}
segmentHasConnections = true;
// Prepare data for segment position calculation
well_conn_type* ert_connection = well_conn_collection_iget(connections, 0);
RigWellResultPoint point = createWellResultPoint(grids[gridNr], ert_connection, branchId, well_segment_get_id(segment), wellName);
lastConnectionPos = grids[gridNr]->cell(point.m_gridCellIndex).center();
cvf::Vec3d cellVxes[8];
grids[gridNr]->cellCornerVertices(point.m_gridCellIndex, cellVxes);
lastConnectionCellCorner = cellVxes[0];
lastConnectionCellSize = (lastConnectionPos - cellVxes[0]).length();
lastConnectionSegmentId = well_segment_get_id(segment);
accLengthFromLastConnection = well_segment_get_length(segment)/(connectionCount+1);
if ( ! segmentBelowHasConnections) upperSegmentIdsOfUnpositionedSegementGroup.push_back(segmentIdBelow);
break; // Stop looping over grids
}
}
// If the segment did not have connections at all, we need to create a resultpoint representing the bottom of the segment
// and store it as an unpositioned segment
if (!segmentHasConnections)
{
RigWellResultPoint data;
data.m_ertBranchId = branchId;
data.m_ertSegmentId = well_segment_get_id(segment);
wellResultBranch.m_branchResultPoints.push_back(data);
// Store data for segment position calculation
bool isAnInsolationContribution = accLengthFromLastConnection < lastConnectionCellSize;
segmentIdToPositionContrib[well_segment_get_id(segment)].push_back(
SegmentPositionContribution(lastConnectionSegmentId, lastConnectionPos, accLengthFromLastConnection, isAnInsolationContribution, segmentIdBelow, -1, false));
accLengthFromLastConnection += well_segment_get_length(segment);
}
segmentIdBelow = well_segment_get_id(segment);
segmentBelowHasConnections = segmentHasConnections;
if (well_segment_get_outlet_id(segment) == -1)
{
segment = NULL;
}
else
{
segment = well_segment_get_outlet(segment);
}
}
// Add resultpoint representing the outlet segment (bottom), if not the branch ends at the wellhead.
const well_segment_type* outletSegment = segment;
if (outletSegment)
{
bool outletSegmentHasConnections = false;
for (int gridNr = lastGridNr; gridNr >= 0; --gridNr)
{
std::string gridName = this->ertGridName(gridNr);
// If this segment has connections in any grid, use the deepest innermost one
if (well_segment_has_grid_connections(outletSegment, gridName.data()))
{
const well_conn_collection_type* connections = well_segment_get_connections(outletSegment, gridName.data());
int connectionCount = well_conn_collection_get_size(connections);
// Select the deepest connection
well_conn_type* ert_connection = well_conn_collection_iget(connections, connectionCount-1);
wellResultBranch.m_branchResultPoints.push_back(
createWellResultPoint(grids[gridNr], ert_connection, branchId, well_segment_get_id(outletSegment), wellName));
outletSegmentHasConnections = true;
break; // Stop looping over grids
}
}
if (!outletSegmentHasConnections)
{
// Store the result point
RigWellResultPoint data;
data.m_ertBranchId = well_segment_get_branch_id(outletSegment);
data.m_ertSegmentId = well_segment_get_id(outletSegment);
wellResultBranch.m_branchResultPoints.push_back(data);
// Store data for segment position calculation,
// and propagate it upwards until we meet a segment with connections
bool isAnInsolationContribution = accLengthFromLastConnection < lastConnectionCellSize;
cvf::Vec3d lastConnectionPosWOffset = lastConnectionPos;
if (isAnInsolationContribution) lastConnectionPosWOffset += 0.4*(lastConnectionCellCorner-lastConnectionPos);
segmentIdToPositionContrib[well_segment_get_id(outletSegment)].push_back(
SegmentPositionContribution(lastConnectionSegmentId, lastConnectionPosWOffset, accLengthFromLastConnection, isAnInsolationContribution, segmentIdBelow, -1, false));
/// Loop further to add this position contribution until a segment with connections is found
accLengthFromLastConnection += well_segment_get_length(outletSegment);
segmentIdBelow = well_segment_get_id(outletSegment);
const well_segment_type* aboveOutletSegment = NULL;
if (well_segment_get_outlet_id(outletSegment) == -1)
{
aboveOutletSegment = NULL;
}
else
{
aboveOutletSegment = well_segment_get_outlet(outletSegment);
}
while (aboveOutletSegment )
{
// Loop backwards, just because we do that the other places
bool segmentHasConnections = false;
for (int gridNr = lastGridNr; gridNr >= 0; --gridNr)
{
std::string gridName = this->ertGridName(gridNr);
// If this segment has connections in any grid, stop traversal
if (well_segment_has_grid_connections(aboveOutletSegment, gridName.data()))
{
segmentHasConnections = true;
break;
}
}
if (!segmentHasConnections)
{
segmentIdToPositionContrib[well_segment_get_id(aboveOutletSegment)].push_back(
SegmentPositionContribution(lastConnectionSegmentId, lastConnectionPos, accLengthFromLastConnection, isAnInsolationContribution, segmentIdBelow, -1, false));
accLengthFromLastConnection += well_segment_get_length(aboveOutletSegment);
}
else
{
break; // We have found a segment with connections. We do not need to propagate position contributions further
}
segmentIdBelow = well_segment_get_id(aboveOutletSegment);
if (well_segment_get_outlet_id(aboveOutletSegment) == -1)
{
aboveOutletSegment = NULL;
}
else
{
aboveOutletSegment = well_segment_get_outlet(aboveOutletSegment);
}
}
}
}
else
{
// Add wellhead as result point Nope. Not Yet, but it is a good idea.
// The centerline calculations would be a bit simpler, I think.
}
// Reverse the order of the resultpoints in this branch, making the deepest come last
std::reverse(wellResultBranch.m_branchResultPoints.begin(), wellResultBranch.m_branchResultPoints.end());
} // End of the branch loop
// Propagate position contributions from connections above unpositioned segments downwards
well_segment_collection_type * allErtSegments = well_state_get_segments( ert_well_state );
for (size_t bIdx = 0; bIdx < wellResFrame.m_wellResultBranches.size(); ++bIdx)
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[ bIdx];
bool previousResultPointWasCell = false;
if (bIdx == 0) previousResultPointWasCell = true; // Wellhead
// Go downwards until we find a none-cell resultpoint just after a cell-resultpoint
// When we do, start propagating
for (size_t rpIdx = 0; rpIdx < wellResultBranch.m_branchResultPoints.size(); ++rpIdx)
{
RigWellResultPoint resPoint = wellResultBranch.m_branchResultPoints[rpIdx];
if ( resPoint.isCell() )
{
previousResultPointWasCell = true;
}
else
{
if (previousResultPointWasCell)
{
RigWellResultPoint prevResPoint;
if (bIdx == 0 && rpIdx == 0)
{
prevResPoint = wellResFrame.m_wellHead;
}
else
{
prevResPoint = wellResultBranch.m_branchResultPoints[rpIdx - 1 ];
}
cvf::Vec3d lastConnectionPos = grids[prevResPoint.m_gridIndex]->cell(prevResPoint.m_gridCellIndex).center();
SegmentPositionContribution posContrib(prevResPoint.m_ertSegmentId, lastConnectionPos, 0.0, false, -1, prevResPoint.m_ertSegmentId, true);
int ertSegmentId = resPoint.m_ertSegmentId;
std::map<int, std::vector<SegmentPositionContribution> >::iterator posContribIt;
posContribIt = segmentIdToPositionContrib.find(ertSegmentId);
CVF_ASSERT(posContribIt != segmentIdToPositionContrib.end());
std::vector<SegmentPositionContribution> posContributions = posContribIt->second;
for (size_t i = 0; i < posContributions.size(); ++i)
{
posContributions[i].m_segmentIdAbove = prevResPoint.m_ertSegmentId;
}
posContributions.push_back(posContrib);
propagatePosContribDownwards(segmentIdToPositionContrib, allErtSegments, ertSegmentId, posContributions);
}
previousResultPointWasCell = false;
}
}
}
// Calculate the bottom position of all the unpositioned segments
// Then do the calculation based on the refined contributions
std::map<int, std::vector<SegmentPositionContribution> >::iterator posContribIt = segmentIdToPositionContrib.begin();
std::map<int, cvf::Vec3d> bottomPositions;
while (posContribIt != segmentIdToPositionContrib.end())
{
bottomPositions[posContribIt->first] = interpolate3DPosition(posContribIt->second);
++posContribIt;
}
// Distribute the positions to the resultpoints stored in the wellResultBranch.m_branchResultPoints
for (size_t bIdx = 0; bIdx < wellResFrame.m_wellResultBranches.size(); ++bIdx)
{
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches[ bIdx];
for (size_t rpIdx = 0; rpIdx < wellResultBranch.m_branchResultPoints.size(); ++rpIdx)
{
RigWellResultPoint & resPoint = wellResultBranch.m_branchResultPoints[rpIdx];
if ( ! resPoint.isCell() )
{
resPoint.m_bottomPosition = bottomPositions[resPoint.m_ertSegmentId];
}
}
}
} // End of the MSW section
else
{
// Code handling None-MSW Wells ... Normal wells that is.
// Loop over all the grids in the model. If we have connections in one, we will discard
// the main grid connections as the well connections are duplicated in the main grid and LGR grids
// Verified on 10 k case JJS. But smarter things could be done, like showing the "main grid well" if turning off the LGR's
bool hasWellConnectionsInLGR = false;
for (size_t gridIdx = 1; gridIdx < grids.size(); ++gridIdx)
{
RigGridBase* lgrGrid = m_eclipseCase->grid(gridIdx);
if (well_state_has_grid_connections(ert_well_state, lgrGrid->gridName().data()))
{
hasWellConnectionsInLGR = true;
break;
}
}
size_t gridNr = hasWellConnectionsInLGR ? 1 : 0;
for (; gridNr < grids.size(); ++gridNr)
{
// Wellhead. If several grids have a wellhead definition for this well, we use the last one. (Possibly the innermost LGR)
const well_conn_type* ert_wellhead = well_state_iget_wellhead(ert_well_state, static_cast<int>(gridNr));
if (ert_wellhead)
{
wellResFrame.m_wellHead = createWellResultPoint(grids[gridNr], ert_wellhead, -1, -1, wellName);
// HACK: Ert returns open as "this is equally wrong as closed for well heads".
// Well heads are not open jfr mail communication with HHGS and JH Statoil 07.01.2016
wellResFrame.m_wellHead.m_isOpen = false;
//std::cout << "Wellhead YES at timeIdx: " << timeIdx << " wellIdx: " << wellIdx << " Grid: " << gridNr << std::endl;
}
else
{
// std::cout << "Wellhead NO at timeIdx: " << timeIdx << " wellIdx: " << wellIdx << " Grid: " << gridNr << std::endl;
//CVF_ASSERT(0); // This is just a test assert to see if this condition exists in some files and it does.
// All the grids does not necessarily have a well head definition.
}
const well_conn_collection_type* connections = well_state_get_grid_connections(ert_well_state, this->ertGridName(gridNr).data());
// Import all well result cells for all connections
if (connections)
{
int connectionCount = well_conn_collection_get_size(connections);
if (connectionCount)
{
wellResFrame.m_wellResultBranches.push_back(RigWellResultBranch());
RigWellResultBranch& wellResultBranch = wellResFrame.m_wellResultBranches.back();
wellResultBranch.m_ertBranchId = 0; // Normal wells have only one branch
size_t existingCellCount = wellResultBranch.m_branchResultPoints.size();
wellResultBranch.m_branchResultPoints.resize(existingCellCount + connectionCount);
for (int connIdx = 0; connIdx < connectionCount; connIdx++)
{
well_conn_type* ert_connection = well_conn_collection_iget(connections, connIdx);
wellResultBranch.m_branchResultPoints[existingCellCount + connIdx] =
createWellResultPoint(grids[gridNr], ert_connection, -1, -1, wellName);
}
}
}
}
}
}
std::vector<QDateTime> filteredTimeSteps;
{
std::vector<RigEclipseTimeStepInfo> filteredTimeStepInfos = createFilteredTimeStepInfos();
for (auto a : filteredTimeStepInfos)
{
filteredTimeSteps.push_back(a.m_date);
}
}
wellResults->computeMappingFromResultTimeIndicesToWellTimeIndices(filteredTimeSteps);
wells.push_back(wellResults.p());
progress.incrementProgress();
}
well_info_free(ert_well_info);
m_eclipseCase->setWellResults(wells);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RifReaderEclipseOutput::validKeywordsForPorosityModel(const QStringList& keywords,
const std::vector<size_t>& keywordDataItemCounts,
const RigActiveCellInfo* matrixActiveCellInfo,
const RigActiveCellInfo* fractureActiveCellInfo,
RiaDefines::PorosityModelType porosityModel,
size_t timeStepCount) const
{
CVF_ASSERT(matrixActiveCellInfo);
if (keywords.size() != static_cast<int>(keywordDataItemCounts.size()))
{
return QStringList();
}
if (porosityModel == RiaDefines::FRACTURE_MODEL)
{
if (fractureActiveCellInfo->reservoirActiveCellCount() == 0)
{
return QStringList();
}
}
QStringList keywordsWithCorrectNumberOfDataItems;
for (int i = 0; i < keywords.size(); i++)
{
QString keyword = keywords[i];
size_t keywordDataItemCount = keywordDataItemCounts[i];
bool validKeyword = false;
size_t timeStepsAllCellsRest = keywordDataItemCount % matrixActiveCellInfo->reservoirCellCount();
if (timeStepsAllCellsRest == 0 && keywordDataItemCount <= timeStepCount * matrixActiveCellInfo->reservoirCellCount())
{
// Found result for all cells for N time steps, usually a static dataset for one time step
validKeyword = true;
}
else
{
size_t timeStepsMatrixRest = keywordDataItemCount % matrixActiveCellInfo->reservoirActiveCellCount();
size_t timeStepsFractureRest = 0;
if (fractureActiveCellInfo->reservoirActiveCellCount() > 0)
{
timeStepsFractureRest = keywordDataItemCount % fractureActiveCellInfo->reservoirActiveCellCount();
}
size_t sumFractureMatrixActiveCellCount = matrixActiveCellInfo->reservoirActiveCellCount() + fractureActiveCellInfo->reservoirActiveCellCount();
size_t timeStepsMatrixAndFractureRest = keywordDataItemCount % sumFractureMatrixActiveCellCount;
if (porosityModel == RiaDefines::MATRIX_MODEL && timeStepsMatrixRest == 0)
{
if (keywordDataItemCount <= timeStepCount * std::max(matrixActiveCellInfo->reservoirActiveCellCount(), sumFractureMatrixActiveCellCount))
{
validKeyword = true;
}
}
else if (porosityModel == RiaDefines::FRACTURE_MODEL && fractureActiveCellInfo->reservoirActiveCellCount() > 0 && timeStepsFractureRest == 0)
{
if (keywordDataItemCount <= timeStepCount * std::max(fractureActiveCellInfo->reservoirActiveCellCount(), sumFractureMatrixActiveCellCount))
{
validKeyword = true;
}
}
else if (timeStepsMatrixAndFractureRest == 0)
{
if (keywordDataItemCount <= timeStepCount * sumFractureMatrixActiveCellCount)
{
validKeyword = true;
}
}
}
// Check for INIT values that has only values for main grid active cells
if (!validKeyword)
{
if (timeStepCount == 1)
{
size_t mainGridMatrixActiveCellCount; matrixActiveCellInfo->gridActiveCellCounts(0, mainGridMatrixActiveCellCount);
size_t mainGridFractureActiveCellCount; fractureActiveCellInfo->gridActiveCellCounts(0, mainGridFractureActiveCellCount);
if ( keywordDataItemCount == mainGridMatrixActiveCellCount
|| keywordDataItemCount == mainGridFractureActiveCellCount
|| keywordDataItemCount == mainGridMatrixActiveCellCount + mainGridFractureActiveCellCount )
{
validKeyword = true;
}
}
}
if (validKeyword)
{
keywordsWithCorrectNumberOfDataItems.push_back(keyword);
}
}
return keywordsWithCorrectNumberOfDataItems;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigEclipseTimeStepInfo> RifReaderEclipseOutput::createFilteredTimeStepInfos()
{
std::vector<RigEclipseTimeStepInfo> timeStepInfos;
if (m_dynamicResultsAccess.notNull())
{
std::vector<QDateTime> timeStepsOnFile;
std::vector<double> daysSinceSimulationStartOnFile;
std::vector<int> reportNumbersOnFile;
m_dynamicResultsAccess->timeSteps(&timeStepsOnFile, &daysSinceSimulationStartOnFile);
reportNumbersOnFile = m_dynamicResultsAccess->reportNumbers();
for (size_t i = 0; i < timeStepsOnFile.size(); i++)
{
if (this->isTimeStepIncludedByFilter(i))
{
timeStepInfos.push_back(RigEclipseTimeStepInfo(timeStepsOnFile[i], reportNumbersOnFile[i], daysSinceSimulationStartOnFile[i]));
}
}
}
return timeStepInfos;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RifReaderEclipseOutput::isEclipseAndSoursimTimeStepsEqual(const QDateTime& eclipseDateTime, const QDateTime& sourSimDateTime)
{
// Compare date down to and including seconds
// Compare of complete date time objects will often result in differences
const int secondsThreshold = 4;
const QString dateStr("yyyy.MMM.dd hh:mm:ss:zzz");
int secondsDiff = eclipseDateTime.secsTo(sourSimDateTime);
if (secondsDiff > secondsThreshold)
{
RiaLogging::error("HDF: Time steps does not match");
RiaLogging::error(QString(" %1 - Eclipse").arg(eclipseDateTime.toString(dateStr)));
RiaLogging::error(QString(" %1 - SourSim").arg(sourSimDateTime.toString(dateStr)));
return false;
}
if (eclipseDateTime.time().second() != sourSimDateTime.time().second())
{
RiaLogging::warning("HDF: Time steps differ, but within time step compare threshold");
RiaLogging::warning(QString(" %1 - Eclipse").arg(eclipseDateTime.toString(dateStr)));
RiaLogging::warning(QString(" %1 - SourSim").arg(sourSimDateTime.toString(dateStr)));
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::extractResultValuesBasedOnPorosityModel(RiaDefines::PorosityModelType matrixOrFracture, std::vector<double>* destinationResultValues, const std::vector<double>& sourceResultValues)
{
if (sourceResultValues.size() == 0) return;
RigActiveCellInfo* fracActCellInfo = m_eclipseCase->activeCellInfo(RiaDefines::FRACTURE_MODEL);
if (matrixOrFracture == RiaDefines::MATRIX_MODEL && fracActCellInfo->reservoirActiveCellCount() == 0)
{
destinationResultValues->insert(destinationResultValues->end(), sourceResultValues.begin(), sourceResultValues.end());
}
else
{
RigActiveCellInfo* actCellInfo = m_eclipseCase->activeCellInfo(RiaDefines::MATRIX_MODEL);
size_t sourceStartPosition = 0;
for (size_t i = 0; i < m_eclipseCase->mainGrid()->gridCount(); i++)
{
size_t matrixActiveCellCount = 0;
size_t fractureActiveCellCount = 0;
actCellInfo->gridActiveCellCounts(i, matrixActiveCellCount);
fracActCellInfo->gridActiveCellCounts(i, fractureActiveCellCount);
if (matrixOrFracture == RiaDefines::MATRIX_MODEL)
{
destinationResultValues->insert(destinationResultValues->end(),
sourceResultValues.begin() + sourceStartPosition,
sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount);
}
else
{
destinationResultValues->insert(destinationResultValues->end(),
sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount,
sourceResultValues.begin() + sourceStartPosition + matrixActiveCellCount + fractureActiveCellCount);
}
sourceStartPosition += (matrixActiveCellCount + fractureActiveCellCount);
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::openInitFile()
{
if (m_ecl_init_file)
{
return;
}
QString initFileName = RifEclipseOutputFileTools::firstFileNameOfType(m_filesWithSameBaseName, ECL_INIT_FILE);
if (initFileName.size() > 0)
{
m_ecl_init_file = ecl_file_open(initFileName.toAscii().data(), ECL_FILE_CLOSE_STREAM);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RifReaderEclipseOutput::transferCoarseningInfo(const ecl_grid_type* eclGrid, RigGridBase* grid)
{
int coarseGroupCount = ecl_grid_get_num_coarse_groups(eclGrid);
for (int i = 0; i < coarseGroupCount; i++)
{
ecl_coarse_cell_type* coarse_cell = ecl_grid_iget_coarse_group(eclGrid, i);
CVF_ASSERT(coarse_cell);
size_t i1 = static_cast<size_t>(ecl_coarse_cell_get_i1(coarse_cell));
size_t i2 = static_cast<size_t>(ecl_coarse_cell_get_i2(coarse_cell));
size_t j1 = static_cast<size_t>(ecl_coarse_cell_get_j1(coarse_cell));
size_t j2 = static_cast<size_t>(ecl_coarse_cell_get_j2(coarse_cell));
size_t k1 = static_cast<size_t>(ecl_coarse_cell_get_k1(coarse_cell));
size_t k2 = static_cast<size_t>(ecl_coarse_cell_get_k2(coarse_cell));
grid->addCoarseningBox(i1, i2, j1, j2, k1, k2);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::string RifReaderEclipseOutput::ertGridName(size_t gridNr)
{
std::string gridName;
if (gridNr == 0)
{
gridName = ECL_GRID_GLOBAL_GRID;
}
else
{
CVF_ASSERT(m_eclipseCase);
CVF_ASSERT(m_eclipseCase->gridCount() > gridNr);
gridName = m_eclipseCase->grid(gridNr)->gridName();
}
return gridName;
}