ResInsight/ApplicationCode/ReservoirDataModel/RigWellPath.cpp

255 lines
8.2 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigWellPath.h"
#include "cvfGeometryTools.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellPath::RigWellPath()
: m_hasDatumElevation(false),
m_datumElevation(0.0)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::setDatumElevation(double value)
{
m_hasDatumElevation = true;
m_datumElevation = value;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigWellPath::hasDatumElevation() const
{
return m_hasDatumElevation;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigWellPath::datumElevation() const
{
return m_datumElevation;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::Vec3d RigWellPath::interpolatedPointAlongWellPath(double measuredDepth) const
{
cvf::Vec3d wellPathPoint = cvf::Vec3d::ZERO;
size_t i = 0;
while (i < m_measuredDepths.size() && m_measuredDepths.at(i) < measuredDepth )
{
i++;
}
if (m_measuredDepths.size() > i)
{
if (i == 0)
{
//For measuredDepth same or lower than first point, use this first point
wellPathPoint = m_wellPathPoints.at(0);
}
else
{
//Do interpolation
double stepsize = (measuredDepth - m_measuredDepths.at(i-1)) /
(m_measuredDepths.at(i) - m_measuredDepths.at(i - 1));
wellPathPoint = m_wellPathPoints.at(i - 1) + stepsize * (m_wellPathPoints.at(i) - m_wellPathPoints.at(i-1));
}
}
else
{
//Use endpoint if measuredDepth same or higher than last point
wellPathPoint = m_wellPathPoints.at(i-1);
}
return wellPathPoint;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigWellPath::wellPathAzimuthAngle(const cvf::Vec3d& position) const
{
size_t closestIndex = cvf::UNDEFINED_SIZE_T;
double closestDistance = cvf::UNDEFINED_DOUBLE;
for (size_t i = 1; i < m_wellPathPoints.size(); i++)
{
cvf::Vec3d p1 = m_wellPathPoints[i - 1];
cvf::Vec3d p2 = m_wellPathPoints[i - 0];
double candidateDistance = cvf::GeometryTools::linePointSquareDist(p1, p2, position);
if (candidateDistance < closestDistance)
{
closestDistance = candidateDistance;
closestIndex = i;
}
}
//For vertical well (x-component of direction = 0) returned angle will be 90.
double AzimuthAngle = 90.0;
if (closestIndex != cvf::UNDEFINED_DOUBLE)
{
cvf::Vec3d p1;
cvf::Vec3d p2;
if (closestIndex > 0)
{
p1 = m_wellPathPoints[closestIndex - 1];
p2 = m_wellPathPoints[closestIndex - 0];
}
else
{
p1 = m_wellPathPoints[closestIndex + 1];
p2 = m_wellPathPoints[closestIndex + 0];
}
cvf::Vec3d direction = p2 - p1;
if (abs(direction.y()) > 1e-5)
{
double atanValue = direction.x() / direction.y();
AzimuthAngle = atan(atanValue);
AzimuthAngle = cvf::Math::toDegrees(AzimuthAngle);
}
}
return AzimuthAngle;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigWellPath::twoClosestPoints(const cvf::Vec3d& position, cvf::Vec3d* p1, cvf::Vec3d* p2) const
{
CVF_ASSERT(p1 && p2);
size_t closestIndex = cvf::UNDEFINED_SIZE_T;
double closestDistance = cvf::UNDEFINED_DOUBLE;
for (size_t i = 1; i < m_wellPathPoints.size(); i++)
{
cvf::Vec3d p1 = m_wellPathPoints[i - 1];
cvf::Vec3d p2 = m_wellPathPoints[i - 0];
double candidateDistance = cvf::GeometryTools::linePointSquareDist(p1, p2, position);
if (candidateDistance < closestDistance)
{
closestDistance = candidateDistance;
closestIndex = i;
}
}
if (closestIndex != cvf::UNDEFINED_DOUBLE)
{
if (closestIndex > 0)
{
*p1 = m_wellPathPoints[closestIndex - 1];
*p2 = m_wellPathPoints[closestIndex - 0];
}
else
{
*p1 = m_wellPathPoints[closestIndex + 1];
*p2 = m_wellPathPoints[closestIndex + 0];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<std::vector<cvf::Vec3d>, std::vector<double> > RigWellPath::clippedPointSubset(double startMD, double endMD) const
{
std::pair<std::vector<cvf::Vec3d>, std::vector<double> > pointsAndMDs;
if (m_measuredDepths.empty()) return pointsAndMDs;
if (startMD > endMD) return pointsAndMDs;
pointsAndMDs.first.push_back(interpolatedPointAlongWellPath(startMD));
pointsAndMDs.second.push_back(startMD);
for (size_t i = 0; i < m_measuredDepths.size(); ++i)
{
double measuredDepth = m_measuredDepths[i];
if (measuredDepth > startMD && measuredDepth < endMD)
{
pointsAndMDs.first.push_back(m_wellPathPoints[i]);
pointsAndMDs.second.push_back(measuredDepth);
}
}
pointsAndMDs.first.push_back(interpolatedPointAlongWellPath(endMD));
pointsAndMDs.second.push_back(endMD);
return pointsAndMDs;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigWellPath::wellPathPointsIncludingFractureIntersection(double fractureIntersectionMD) const
{
std::vector<cvf::Vec3d> points;
if (m_measuredDepths.empty()) return points;
cvf::Vec3d fractureWellPathPpoint = interpolatedPointAlongWellPath(fractureIntersectionMD);
for (size_t i = 0; i < m_measuredDepths.size()-1; i++)
{
if (m_measuredDepths[i] < fractureIntersectionMD)
{
points.push_back(m_wellPathPoints[i]);
if (m_measuredDepths[i + 1] > fractureIntersectionMD)
{
points.push_back(fractureWellPathPpoint);
}
}
else if (m_measuredDepths[i] < fractureIntersectionMD)
{
if (i == 0)
{
points.push_back(fractureWellPathPpoint);
}
points.push_back(m_wellPathPoints[i]);
}
}
points.push_back(m_wellPathPoints.back());
return points;
}