ResInsight/ApplicationCode/ReservoirDataModel/RigCaseCellResultsData.cpp
2014-06-20 14:05:28 +02:00

826 lines
29 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCaseCellResultsData.h"
#include "RifReaderInterface.h"
#include "RigMainGrid.h"
#include "RigStatisticsMath.h"
#include <QDateTime>
#include <math.h>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigCaseCellResultsData::RigCaseCellResultsData(RigMainGrid* ownerGrid)
{
CVF_ASSERT(ownerGrid != NULL);
m_ownerMainGrid = ownerGrid;
m_combinedTransmissibilityResultIndex = cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::setMainGrid(RigMainGrid* ownerGrid)
{
m_ownerMainGrid = ownerGrid;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::minMaxCellScalarValues( size_t scalarResultIndex, double& min, double& max )
{
min = HUGE_VAL;
max = -HUGE_VAL;
CVF_ASSERT(scalarResultIndex < resultCount());
// Extend array and cache vars
if (scalarResultIndex >= m_maxMinValues.size() )
{
m_maxMinValues.resize(scalarResultIndex+1, std::make_pair(HUGE_VAL, -HUGE_VAL));
}
if (m_maxMinValues[scalarResultIndex].first != HUGE_VAL)
{
min = m_maxMinValues[scalarResultIndex].first;
max = m_maxMinValues[scalarResultIndex].second;
return;
}
size_t i;
for (i = 0; i < timeStepCount(scalarResultIndex); i++)
{
double tsmin, tsmax;
minMaxCellScalarValues(scalarResultIndex, i, tsmin, tsmax);
if (tsmin < min) min = tsmin;
if (tsmax > max) max = tsmax;
}
m_maxMinValues[scalarResultIndex].first = min;
m_maxMinValues[scalarResultIndex].second= max;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::minMaxCellScalarValues(size_t scalarResultIndex, size_t timeStepIndex, double& min, double& max)
{
min = HUGE_VAL;
max = -HUGE_VAL;
CVF_ASSERT(scalarResultIndex < resultCount());
if (timeStepIndex >= m_cellScalarResults[scalarResultIndex].size())
{
return;
}
if (scalarResultIndex >= m_maxMinValuesPrTs.size())
{
m_maxMinValuesPrTs.resize(scalarResultIndex+1);
}
if (timeStepIndex >= m_maxMinValuesPrTs[scalarResultIndex].size())
{
m_maxMinValuesPrTs[scalarResultIndex].resize(timeStepIndex+1, std::make_pair(HUGE_VAL, -HUGE_VAL));
}
if (m_maxMinValuesPrTs[scalarResultIndex][timeStepIndex].first != HUGE_VAL)
{
min = m_maxMinValuesPrTs[scalarResultIndex][timeStepIndex].first;
max = m_maxMinValuesPrTs[scalarResultIndex][timeStepIndex].second;
return;
}
if (scalarResultIndex == m_combinedTransmissibilityResultIndex)
{
size_t tranX, tranY, tranZ;
if (!findTransmissibilityResults(tranX, tranY, tranZ)) return;
double tranMin;
double tranMax;
minMaxCellScalarValues(tranX, timeStepIndex, tranMin, tranMax);
min = CVF_MIN(tranMin, min);
max = CVF_MAX(tranMax, max);
minMaxCellScalarValues(tranY, timeStepIndex, tranMin, tranMax);
min = CVF_MIN(tranMin, min);
max = CVF_MAX(tranMax, max);
minMaxCellScalarValues(tranZ, timeStepIndex, tranMin, tranMax);
min = CVF_MIN(tranMin, min);
max = CVF_MAX(tranMax, max);
return;
}
std::vector<double>& values = m_cellScalarResults[scalarResultIndex][timeStepIndex];
size_t i;
for (i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL)
{
continue;
}
if (values[i] < min)
{
min = values[i];
}
if (values[i] > max)
{
max = values[i];
}
}
m_maxMinValuesPrTs[scalarResultIndex][timeStepIndex].first = min;
m_maxMinValuesPrTs[scalarResultIndex][timeStepIndex].second= max;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigCaseCellResultsData::cellScalarValuesHistogram(size_t scalarResultIndex)
{
CVF_ASSERT(scalarResultIndex < resultCount());
// Extend array and cache vars
if (scalarResultIndex >= m_histograms.size() )
{
m_histograms.resize(resultCount());
m_p10p90.resize(resultCount(), std::make_pair(HUGE_VAL, HUGE_VAL));
}
if (m_histograms[scalarResultIndex].size())
{
return m_histograms[scalarResultIndex];
}
double min;
double max;
size_t nBins = 100;
this->minMaxCellScalarValues( scalarResultIndex, min, max );
RigHistogramCalculator histCalc(min, max, nBins, &m_histograms[scalarResultIndex]);
if (scalarResultIndex == m_combinedTransmissibilityResultIndex)
{
size_t tranX, tranY, tranZ;
if (findTransmissibilityResults(tranX, tranY, tranZ))
{
for (size_t tsIdx = 0; tsIdx < this->timeStepCount(scalarResultIndex); tsIdx++)
{
histCalc.addData(m_cellScalarResults[tranX][tsIdx]);
histCalc.addData(m_cellScalarResults[tranY][tsIdx]);
histCalc.addData(m_cellScalarResults[tranZ][tsIdx]);
}
}
}
else
{
for (size_t tsIdx = 0; tsIdx < this->timeStepCount(scalarResultIndex); tsIdx++)
{
std::vector<double>& values = m_cellScalarResults[scalarResultIndex][tsIdx];
histCalc.addData(values);
}
}
m_p10p90[scalarResultIndex].first = histCalc.calculatePercentil(0.1);
m_p10p90[scalarResultIndex].second = histCalc.calculatePercentil(0.9);
return m_histograms[scalarResultIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::p10p90CellScalarValues(size_t scalarResultIndex, double& p10, double& p90)
{
// First make sure they are calculated
const std::vector<size_t>& histogr = cellScalarValuesHistogram( scalarResultIndex);
// Then return them
p10 = m_p10p90[scalarResultIndex].first;
p90 = m_p10p90[scalarResultIndex].second;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::meanCellScalarValues(size_t scalarResultIndex, double& meanValue)
{
CVF_ASSERT(scalarResultIndex < resultCount());
// Extend array and cache vars
if (scalarResultIndex >= m_meanValues.size() )
{
m_meanValues.resize(scalarResultIndex+1, HUGE_VAL);
}
if (m_meanValues[scalarResultIndex] != HUGE_VAL)
{
meanValue = m_meanValues[scalarResultIndex];
return;
}
double valueSum = 0.0;
size_t count = 0;
if (scalarResultIndex == m_combinedTransmissibilityResultIndex)
{
size_t tranX, tranY, tranZ;
if (findTransmissibilityResults(tranX, tranY, tranZ))
{
for (size_t tIdx = 0; tIdx < timeStepCount(tranX); tIdx++)
{
{
std::vector<double>& values = m_cellScalarResults[tranX][tIdx];
for (size_t cIdx = 0; cIdx < values.size(); ++cIdx)
{
valueSum += values[cIdx];
}
count += values.size();
}
{
std::vector<double>& values = m_cellScalarResults[tranY][tIdx];
for (size_t cIdx = 0; cIdx < values.size(); ++cIdx)
{
valueSum += values[cIdx];
}
count += values.size();
}
{
std::vector<double>& values = m_cellScalarResults[tranZ][tIdx];
for (size_t cIdx = 0; cIdx < values.size(); ++cIdx)
{
valueSum += values[cIdx];
}
count += values.size();
}
}
}
}
else
{
for (size_t tIdx = 0; tIdx < timeStepCount(scalarResultIndex); tIdx++)
{
std::vector<double>& values = m_cellScalarResults[scalarResultIndex][tIdx];
for (size_t cIdx = 0; cIdx < values.size(); ++cIdx)
{
valueSum += values[cIdx];
}
count += values.size();
}
}
m_meanValues[scalarResultIndex] = valueSum/count;
meanValue = m_meanValues[scalarResultIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::resultCount() const
{
return m_cellScalarResults.size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::timeStepCount(size_t scalarResultIndex) const
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
return m_cellScalarResults[scalarResultIndex].size();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector< std::vector<double> > & RigCaseCellResultsData::cellScalarResults( size_t scalarResultIndex ) const
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
return m_cellScalarResults[scalarResultIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector< std::vector<double> > & RigCaseCellResultsData::cellScalarResults( size_t scalarResultIndex )
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
return m_cellScalarResults[scalarResultIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double>& RigCaseCellResultsData::cellScalarResults(size_t scalarResultIndex, size_t timeStepIndex)
{
CVF_TIGHT_ASSERT(scalarResultIndex < resultCount());
CVF_TIGHT_ASSERT(timeStepIndex < m_cellScalarResults[scalarResultIndex].size());
return m_cellScalarResults[scalarResultIndex][timeStepIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigCaseCellResultsData::cellScalarResult( size_t scalarResultIndex, size_t timeStepIndex, size_t resultValueIndex)
{
if (scalarResultIndex < resultCount() &&
timeStepIndex < m_cellScalarResults[scalarResultIndex].size() &&
resultValueIndex != cvf::UNDEFINED_SIZE_T &&
resultValueIndex < m_cellScalarResults[scalarResultIndex][timeStepIndex].size())
{
return m_cellScalarResults[scalarResultIndex][timeStepIndex][resultValueIndex];
}
else
{
return HUGE_VAL;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::findScalarResultIndex(RimDefines::ResultCatType type, const QString& resultName) const
{
std::vector<ResultInfo>::const_iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); it++)
{
if (it->m_resultType == type && it->m_resultName == resultName)
{
return it->m_gridScalarResultIndex;
}
}
return cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::findScalarResultIndex(const QString& resultName) const
{
size_t scalarResultIndex = cvf::UNDEFINED_SIZE_T;
scalarResultIndex = this->findScalarResultIndex(RimDefines::STATIC_NATIVE, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RimDefines::DYNAMIC_NATIVE, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RimDefines::GENERATED, resultName);
}
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->findScalarResultIndex(RimDefines::INPUT_PROPERTY, resultName);
}
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
/// Adds an empty scalar set, and returns the scalarResultIndex to it.
/// if resultName already exists, it returns the scalarResultIndex to the existing result.
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::addEmptyScalarResult(RimDefines::ResultCatType type, const QString& resultName, bool needsToBeStored)
{
size_t scalarResultIndex = cvf::UNDEFINED_SIZE_T;
scalarResultIndex = this->findScalarResultIndex(type, resultName);
if (scalarResultIndex == cvf::UNDEFINED_SIZE_T)
{
scalarResultIndex = this->resultCount();
m_cellScalarResults.push_back(std::vector<std::vector<double> >());
ResultInfo resInfo(type, needsToBeStored, false, resultName, scalarResultIndex);
m_resultInfos.push_back(resInfo);
}
return scalarResultIndex;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QStringList RigCaseCellResultsData::resultNames(RimDefines::ResultCatType resType) const
{
QStringList varList;
std::vector<ResultInfo>::const_iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); it++)
{
if (it->m_resultType == resType )
{
varList.push_back(it->m_resultName);
}
}
return varList;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::recalculateMinMax(size_t scalarResultIndex)
{
// Make sure cached max min values are recalculated next time asked for, since
// the data could be changed.
if (scalarResultIndex < m_maxMinValues.size())
{
m_maxMinValues[scalarResultIndex] = std::make_pair(HUGE_VAL, -HUGE_VAL);
}
if (scalarResultIndex < m_maxMinValuesPrTs.size())
{
m_maxMinValuesPrTs[scalarResultIndex].clear();
}
}
//--------------------------------------------------------------------------------------------------
/// Returns whether the result data in question is addressed by Active Cell Index
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::isUsingGlobalActiveIndex(size_t scalarResultIndex) const
{
CVF_TIGHT_ASSERT(scalarResultIndex < m_cellScalarResults.size());
if (!m_cellScalarResults[scalarResultIndex].size()) return true;
size_t firstTimeStepResultValueCount = m_cellScalarResults[scalarResultIndex][0].size();
if (firstTimeStepResultValueCount == m_ownerMainGrid->cells().size()) return false;
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QDateTime RigCaseCellResultsData::timeStepDate(size_t scalarResultIndex, size_t timeStepIndex) const
{
if (scalarResultIndex < m_resultInfos.size() && (size_t)(m_resultInfos[scalarResultIndex].m_timeStepDates.size()) > timeStepIndex)
return m_resultInfos[scalarResultIndex].m_timeStepDates[static_cast<int>(timeStepIndex)];
else
return QDateTime();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QDateTime> RigCaseCellResultsData::timeStepDates(size_t scalarResultIndex) const
{
if (scalarResultIndex < m_resultInfos.size() )
return m_resultInfos[scalarResultIndex].m_timeStepDates;
else
return std::vector<QDateTime>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::setTimeStepDates(size_t scalarResultIndex, const std::vector<QDateTime>& dates)
{
CVF_ASSERT(scalarResultIndex < m_resultInfos.size() );
m_resultInfos[scalarResultIndex].m_timeStepDates = dates;
std::vector< std::vector<double> >& dataValues = this->cellScalarResults(scalarResultIndex);
dataValues.resize(dates.size());
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::maxTimeStepCount(size_t* scalarResultIndexWithMostTimeSteps) const
{
size_t maxTsCount = 0;
size_t scalarResultIndexWithMaxTsCount = cvf::UNDEFINED_SIZE_T;
for (size_t i = 0; i < m_resultInfos.size(); i++)
{
if (m_resultInfos[i].m_timeStepDates.size() > maxTsCount)
{
maxTsCount = m_resultInfos[i].m_timeStepDates.size();
scalarResultIndexWithMaxTsCount = i;
}
}
if (scalarResultIndexWithMostTimeSteps)
{
*scalarResultIndexWithMostTimeSteps = scalarResultIndexWithMaxTsCount;
}
return maxTsCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RigCaseCellResultsData::makeResultNameUnique(const QString& resultNameProposal) const
{
QString newResultName = resultNameProposal;
size_t resultIndex = cvf::UNDEFINED_SIZE_T;
int nameNum = 1;
int stringLength = newResultName.size();
while (true)
{
resultIndex = this->findScalarResultIndex(newResultName);
if (resultIndex == cvf::UNDEFINED_SIZE_T) break;
newResultName.truncate(stringLength);
newResultName += "_" + QString::number(nameNum);
++nameNum;
}
return newResultName;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::removeResult(const QString& resultName)
{
size_t resultIdx = findScalarResultIndex(resultName);
if (resultIdx == cvf::UNDEFINED_SIZE_T) return;
m_cellScalarResults[resultIdx].clear();
m_resultInfos[resultIdx].m_resultType = RimDefines::REMOVED;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::clearAllResults()
{
m_cellScalarResults.clear();
m_maxMinValues.clear();
m_histograms.clear();
m_p10p90.clear();
m_meanValues.clear();
m_maxMinValuesPrTs.clear();
m_resultInfos.clear();
}
//--------------------------------------------------------------------------------------------------
/// Removes all the actual numbers put into this object, and frees up the memory.
/// Does not touch the metadata in any way
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::freeAllocatedResultsData()
{
for (size_t resultIdx = 0; resultIdx < m_cellScalarResults.size(); ++resultIdx)
{
for (size_t tsIdx = 0; tsIdx < m_cellScalarResults[resultIdx].size(); ++tsIdx)
{
// Using swap with an empty vector as that is the safest way to really get rid of the allocated data in a vector
std::vector<double> empty;
m_cellScalarResults[resultIdx][tsIdx].swap(empty);
}
}
}
//--------------------------------------------------------------------------------------------------
/// Add a result with given type and name, and allocate one result vector for the static result values
//--------------------------------------------------------------------------------------------------
size_t RigCaseCellResultsData::addStaticScalarResult(RimDefines::ResultCatType type, const QString& resultName, bool needsToBeStored, size_t resultValueCount)
{
size_t resultIdx = addEmptyScalarResult(type, resultName, needsToBeStored);
m_cellScalarResults[resultIdx].push_back(std::vector<double>());
m_cellScalarResults[resultIdx][0].resize(resultValueCount, HUGE_VAL);
return resultIdx;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RifReaderInterface::PorosityModelResultType RigCaseCellResultsData::convertFromProjectModelPorosityModel(RimDefines::PorosityModelType porosityModel)
{
if (porosityModel == RimDefines::MATRIX_MODEL) return RifReaderInterface::MATRIX_RESULTS;
return RifReaderInterface::FRACTURE_RESULTS;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::mustBeCalculated(size_t scalarResultIndex) const
{
std::vector<ResultInfo>::const_iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); it++)
{
if (it->m_gridScalarResultIndex == scalarResultIndex)
{
return it->m_mustBeCalculated;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::setMustBeCalculated(size_t scalarResultIndex)
{
std::vector<ResultInfo>::iterator it;
for (it = m_resultInfos.begin(); it != m_resultInfos.end(); it++)
{
if (it->m_gridScalarResultIndex == scalarResultIndex)
{
it->m_mustBeCalculated = true;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::posNegClosestToZero(size_t scalarResultIndex, double& pos, double& neg)
{
pos = HUGE_VAL;
neg = -HUGE_VAL;
CVF_ASSERT(scalarResultIndex < resultCount());
// Extend array and cache vars
if (scalarResultIndex >= m_posNegClosestToZero.size() )
{
m_posNegClosestToZero.resize(scalarResultIndex+1, std::make_pair(HUGE_VAL, -HUGE_VAL));
}
if (m_posNegClosestToZero[scalarResultIndex].first != HUGE_VAL)
{
pos = m_posNegClosestToZero[scalarResultIndex].first;
neg = m_posNegClosestToZero[scalarResultIndex].second;
return;
}
size_t i;
for (i = 0; i < timeStepCount(scalarResultIndex); i++)
{
double tsNeg, tsPos;
posNegClosestToZero(scalarResultIndex, i, tsPos, tsNeg);
if (tsNeg > neg && tsNeg < 0) neg = tsNeg;
if (tsPos < pos && tsPos > 0) pos = tsPos;
}
m_posNegClosestToZero[scalarResultIndex].first = pos;
m_posNegClosestToZero[scalarResultIndex].second= neg;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::posNegClosestToZero(size_t scalarResultIndex, size_t timeStepIndex, double& pos, double& neg)
{
pos = HUGE_VAL;
neg = -HUGE_VAL;
CVF_ASSERT(scalarResultIndex < resultCount());
if (timeStepIndex >= m_cellScalarResults[scalarResultIndex].size())
{
return;
}
if (scalarResultIndex >= m_posNegClosestToZeroPrTs.size())
{
m_posNegClosestToZeroPrTs.resize(scalarResultIndex+1);
}
if (timeStepIndex >= m_posNegClosestToZeroPrTs[scalarResultIndex].size())
{
m_posNegClosestToZeroPrTs[scalarResultIndex].resize(timeStepIndex+1, std::make_pair(HUGE_VAL, -HUGE_VAL));
}
if (m_posNegClosestToZeroPrTs[scalarResultIndex][timeStepIndex].first != HUGE_VAL)
{
pos = m_posNegClosestToZeroPrTs[scalarResultIndex][timeStepIndex].first;
neg = m_posNegClosestToZeroPrTs[scalarResultIndex][timeStepIndex].second;
return;
}
if (scalarResultIndex == m_combinedTransmissibilityResultIndex)
{
size_t tranX, tranY, tranZ;
if (findTransmissibilityResults(tranX, tranY, tranZ))
{
double traPos, traNeg;
posNegClosestToZero(tranX, timeStepIndex, traPos, traNeg);
if ( 0 < traPos && traPos < pos ) pos = traPos;
if ( neg < traNeg && traNeg < 0 ) neg = traNeg;
posNegClosestToZero(tranY, timeStepIndex, traPos, traNeg);
if ( 0 < traPos && traPos < pos ) pos = traPos;
if ( neg < traNeg && traNeg < 0 ) neg = traNeg;
posNegClosestToZero(tranZ, timeStepIndex, traPos, traNeg);
if ( 0 < traPos && traPos < pos ) pos = traPos;
if ( neg < traNeg && traNeg < 0 ) neg = traNeg;
}
return;
}
std::vector<double>& values = m_cellScalarResults[scalarResultIndex][timeStepIndex];
size_t i;
for (i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL)
{
continue;
}
if (values[i] < pos && values[i] > 0)
{
pos = values[i];
}
if (values[i] > neg && values[i] < 0)
{
neg = values[i];
}
}
m_posNegClosestToZeroPrTs[scalarResultIndex][timeStepIndex].first = pos;
m_posNegClosestToZeroPrTs[scalarResultIndex][timeStepIndex].second= neg;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCaseCellResultsData::createCombinedTransmissibilityResult()
{
size_t combinedTransmissibilityIndex = findScalarResultIndex(RimDefines::STATIC_NATIVE, RimDefines::combinedTransmissibilityResultName());
if (combinedTransmissibilityIndex != cvf::UNDEFINED_SIZE_T) return;
size_t tranX, tranY, tranZ;
if (!findTransmissibilityResults(tranX, tranY, tranZ)) return;
m_combinedTransmissibilityResultIndex = addStaticScalarResult(RimDefines::STATIC_NATIVE, RimDefines::combinedTransmissibilityResultName(), false, 0);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigCaseCellResultsData::findTransmissibilityResults(size_t& tranX, size_t& tranY, size_t& tranZ) const
{
tranX = findScalarResultIndex(RimDefines::STATIC_NATIVE, "TRANX");
tranY = findScalarResultIndex(RimDefines::STATIC_NATIVE, "TRANY");
tranZ = findScalarResultIndex(RimDefines::STATIC_NATIVE, "TRANZ");
if (tranX == cvf::UNDEFINED_SIZE_T ||
tranY == cvf::UNDEFINED_SIZE_T ||
tranZ == cvf::UNDEFINED_SIZE_T)
{
return false;
}
return true;
}