ResInsight/ApplicationCode/ProjectDataModel/RimEclipseStatisticsCaseEvaluator.cpp
2020-09-14 21:46:27 +02:00

395 lines
20 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimEclipseStatisticsCaseEvaluator.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigEclipseResultInfo.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigResultModifier.h"
#include "RigResultModifierFactory.h"
#include "RigStatisticsMath.h"
#include "RimIdenticalGridCaseGroup.h"
#include "RimReservoirCellResultsStorage.h"
#include "cafProgressInfo.h"
#include <QDebug>
#include <algorithm>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEclipseStatisticsCaseEvaluator::addNamedResult( RigCaseCellResultsData* destinationCellResults,
RiaDefines::ResultCatType resultType,
const QString& resultName,
size_t activeUnionCellCount )
{
// Use time step dates from first result in first source case
CVF_ASSERT( m_sourceCases.size() > 0 );
std::vector<RigEclipseResultAddress> resAddresses =
m_sourceCases[0]->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->existingResults();
std::vector<RigEclipseTimeStepInfo> sourceTimeStepInfos =
m_sourceCases[0]->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->timeStepInfos( resAddresses[0] );
RigEclipseResultAddress resAddr( resultType, resultName );
destinationCellResults->createResultEntry( resAddr, true );
destinationCellResults->setTimeStepInfos( resAddr, sourceTimeStepInfos );
std::vector<std::vector<double>>* dataValues = destinationCellResults->modifiableCellScalarResultTimesteps( resAddr );
size_t timeStepCount = std::max( size_t( 1 ), sourceTimeStepInfos.size() );
dataValues->resize( timeStepCount );
// Initializes the size of the destination dataset to active union cell count
for ( size_t i = 0; i < timeStepCount; i++ )
{
dataValues->at( i ).resize( activeUnionCellCount, HUGE_VAL );
}
}
QString createResultNameMin( const QString& resultName )
{
return resultName + "_MIN";
}
QString createResultNameMax( const QString& resultName )
{
return resultName + "_MAX";
}
QString createResultNameSum( const QString& resultName )
{
return resultName + "_SUM";
}
QString createResultNameMean( const QString& resultName )
{
return resultName + "_MEAN";
}
QString createResultNameDev( const QString& resultName )
{
return resultName + "_DEV";
}
QString createResultNameRange( const QString& resultName )
{
return resultName + "_RANGE";
}
QString createResultNamePVal( const QString& resultName, double pValPos )
{
// Invert the number for display text
double valueForDisplay = 100.0 - pValPos;
return resultName + "_P" + QString::number( valueForDisplay );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEclipseStatisticsCaseEvaluator::evaluateForResults( const QList<ResSpec>& resultSpecification )
{
CVF_ASSERT( m_destinationCase );
// First build the destination result data structures to receive the statistics
for ( int i = 0; i < resultSpecification.size(); i++ )
{
RiaDefines::PorosityModelType poroModel = resultSpecification[i].m_poroModel;
RiaDefines::ResultCatType resultType = resultSpecification[i].m_resType;
QString resultName = resultSpecification[i].m_resVarName;
size_t activeCellCount = m_destinationCase->activeCellInfo( poroModel )->reservoirActiveCellCount();
RigCaseCellResultsData* destCellResultsData = m_destinationCase->results( poroModel );
// Placeholder data used to be created here,
// this is now moved to RimIdenticalGridCaseGroup::loadMainCaseAndActiveCellInfo()
// Create new result data structures to contain the statistical values
std::vector<QString> statisticalResultNames;
statisticalResultNames.push_back( createResultNameMin( resultName ) );
statisticalResultNames.push_back( createResultNameMax( resultName ) );
statisticalResultNames.push_back( createResultNameSum( resultName ) );
statisticalResultNames.push_back( createResultNameMean( resultName ) );
statisticalResultNames.push_back( createResultNameDev( resultName ) );
statisticalResultNames.push_back( createResultNameRange( resultName ) );
if ( m_statisticsConfig.m_calculatePercentiles )
{
statisticalResultNames.push_back( createResultNamePVal( resultName, m_statisticsConfig.m_pMinPos ) );
statisticalResultNames.push_back( createResultNamePVal( resultName, m_statisticsConfig.m_pMidPos ) );
statisticalResultNames.push_back( createResultNamePVal( resultName, m_statisticsConfig.m_pMaxPos ) );
}
if ( activeCellCount > 0 )
{
for ( size_t j = 0; j < statisticalResultNames.size(); ++j )
{
addNamedResult( destCellResultsData, resultType, statisticalResultNames[j], activeCellCount );
}
}
}
// Start the loop that calculates the statistics
caf::ProgressInfo progressInfo( m_timeStepIndices.size(), "Computing Statistics" );
for ( size_t timeIndicesIdx = 0; timeIndicesIdx < m_timeStepIndices.size(); timeIndicesIdx++ )
{
size_t timeStepIdx = m_timeStepIndices[timeIndicesIdx];
for ( size_t gridIdx = 0; gridIdx < m_destinationCase->gridCount(); gridIdx++ )
{
RigGridBase* grid = m_destinationCase->grid( gridIdx );
for ( int resSpecIdx = 0; resSpecIdx < resultSpecification.size(); resSpecIdx++ )
{
RiaDefines::PorosityModelType poroModel = resultSpecification[resSpecIdx].m_poroModel;
RiaDefines::ResultCatType resultType = resultSpecification[resSpecIdx].m_resType;
QString resultName = resultSpecification[resSpecIdx].m_resVarName;
size_t activeCellCount = m_destinationCase->activeCellInfo( poroModel )->reservoirActiveCellCount();
if ( activeCellCount == 0 ) continue;
size_t dataAccessTimeStepIndex = timeStepIdx;
// Always evaluate statistics once, and always use time step index zero
if ( resultType == RiaDefines::ResultCatType::STATIC_NATIVE )
{
if ( timeIndicesIdx > 0 ) continue;
dataAccessTimeStepIndex = 0;
}
// Build data access objects for source scalar results
cvf::Collection<RigResultAccessor> sourceDataAccessList;
for ( size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++ )
{
RimEclipseCase* sourceCase = m_sourceCases.at( caseIdx );
// Trigger loading of dataset
sourceCase->results( poroModel )
->ensureKnownResultLoadedForTimeStep( RigEclipseResultAddress( resultType, resultName ),
dataAccessTimeStepIndex );
cvf::ref<RigResultAccessor> resultAccessor =
RigResultAccessorFactory::createFromResultAddress( sourceCase->eclipseCaseData(),
gridIdx,
poroModel,
dataAccessTimeStepIndex,
RigEclipseResultAddress( resultType,
resultName ) );
if ( resultAccessor.notNull() )
{
sourceDataAccessList.push_back( resultAccessor.p() );
}
}
// Build data access objects for destination scalar results
// Find the created result container, if any, and put its resultAccessor into the enum indexed
// destination collection
cvf::Collection<RigResultModifier> destinationDataAccessList;
std::vector<QString> statisticalResultNames( STAT_PARAM_COUNT );
statisticalResultNames[MIN] = createResultNameMin( resultName );
statisticalResultNames[MAX] = createResultNameMax( resultName );
statisticalResultNames[SUM] = createResultNameSum( resultName );
statisticalResultNames[RANGE] = createResultNameRange( resultName );
statisticalResultNames[MEAN] = createResultNameMean( resultName );
statisticalResultNames[STDEV] = createResultNameDev( resultName );
statisticalResultNames[PMIN] = createResultNamePVal( resultName, m_statisticsConfig.m_pMinPos );
statisticalResultNames[PMID] = createResultNamePVal( resultName, m_statisticsConfig.m_pMidPos );
statisticalResultNames[PMAX] = createResultNamePVal( resultName, m_statisticsConfig.m_pMaxPos );
for ( size_t stIdx = 0; stIdx < statisticalResultNames.size(); ++stIdx )
{
cvf::ref<RigResultModifier> resultModifier =
RigResultModifierFactory::createResultModifier( m_destinationCase,
grid->gridIndex(),
poroModel,
dataAccessTimeStepIndex,
RigEclipseResultAddress( resultType,
statisticalResultNames[stIdx] ) );
destinationDataAccessList.push_back( resultModifier.p() );
}
std::vector<double> statParams( STAT_PARAM_COUNT, HUGE_VAL );
std::vector<double> values( sourceDataAccessList.size(), HUGE_VAL );
int cellCount = static_cast<int>( grid->cellCount() );
// Loop over the cells in the grid, get the case values, and calculate the cell statistics
#pragma omp parallel for schedule( dynamic ) firstprivate( statParams, values )
for ( int cellIdx = 0; cellIdx < cellCount; cellIdx++ )
{
size_t reservoirCellIndex = grid->reservoirCellIndex( cellIdx );
if ( m_destinationCase->activeCellInfo( poroModel )->isActive( reservoirCellIndex ) )
{
// Extract the cell values from each of the cases and assemble them into one vector
bool foundAnyValidValues = false;
for ( size_t caseIdx = 0; caseIdx < sourceDataAccessList.size(); caseIdx++ )
{
double val = sourceDataAccessList.at( caseIdx )->cellScalar( cellIdx );
// Replace huge_val with zero in the statistical computation for the following case
if ( m_useZeroAsInactiveCellValue || resultName.toUpper() == "ACTNUM" )
{
if ( m_identicalGridCaseGroup->unionOfActiveCells( poroModel )->isActive( reservoirCellIndex ) &&
val == HUGE_VAL )
{
val = 0.0;
}
}
values[caseIdx] = val;
if ( val != HUGE_VAL )
{
foundAnyValidValues = true;
}
}
// Do the real statistics calculations
if ( foundAnyValidValues )
{
RigStatisticsMath::calculateBasicStatistics( values,
&statParams[MIN],
&statParams[MAX],
&statParams[SUM],
&statParams[RANGE],
&statParams[MEAN],
&statParams[STDEV] );
// Calculate percentiles
if ( m_statisticsConfig.m_calculatePercentiles )
{
if ( m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::NEAREST_OBSERVATION )
{
std::vector<double> pValPoss;
pValPoss.push_back( m_statisticsConfig.m_pMinPos );
pValPoss.push_back( m_statisticsConfig.m_pMidPos );
pValPoss.push_back( m_statisticsConfig.m_pMaxPos );
std::vector<double> pVals =
RigStatisticsMath::calculateNearestRankPercentiles( values, pValPoss );
statParams[PMIN] = pVals[0];
statParams[PMID] = pVals[1];
statParams[PMAX] = pVals[2];
}
else if ( m_statisticsConfig.m_pValMethod == RimEclipseStatisticsCase::HISTOGRAM_ESTIMATED )
{
std::vector<size_t> histogram;
RigHistogramCalculator histCalc( statParams[MIN], statParams[MAX], 100, &histogram );
histCalc.addData( values );
statParams[PMIN] = histCalc.calculatePercentil( m_statisticsConfig.m_pMinPos / 100.0 );
statParams[PMID] = histCalc.calculatePercentil( m_statisticsConfig.m_pMidPos / 100.0 );
statParams[PMAX] = histCalc.calculatePercentil( m_statisticsConfig.m_pMaxPos / 100.0 );
}
else if ( m_statisticsConfig.m_pValMethod ==
RimEclipseStatisticsCase::INTERPOLATED_OBSERVATION )
{
std::vector<double> pValPoss;
pValPoss.push_back( m_statisticsConfig.m_pMinPos );
pValPoss.push_back( m_statisticsConfig.m_pMidPos );
pValPoss.push_back( m_statisticsConfig.m_pMaxPos );
std::vector<double> pVals =
RigStatisticsMath::calculateInterpolatedPercentiles( values, pValPoss );
statParams[PMIN] = pVals[0];
statParams[PMID] = pVals[1];
statParams[PMAX] = pVals[2];
}
else
{
CVF_ASSERT( false );
}
}
}
// Set the results into the results data structures
for ( size_t stIdx = 0; stIdx < statParams.size(); ++stIdx )
{
if ( destinationDataAccessList[stIdx].notNull() )
{
destinationDataAccessList[stIdx]->setCellScalar( cellIdx, statParams[stIdx] );
}
}
}
}
}
}
// When one time step is completed, free memory and clean up
// Microsoft note: On Windows, the maximum number of files open at the same time is 512
// http://msdn.microsoft.com/en-us/library/kdfaxaay%28vs.71%29.aspx
for ( size_t caseIdx = 0; caseIdx < m_sourceCases.size(); caseIdx++ )
{
RimEclipseCase* eclipseCase = m_sourceCases.at( caseIdx );
if ( !eclipseCase->reservoirViews.size() )
{
eclipseCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL )->freeAllocatedResultsData();
eclipseCase->results( RiaDefines::PorosityModelType::FRACTURE_MODEL )->freeAllocatedResultsData();
}
}
progressInfo.setProgress( timeIndicesIdx );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimEclipseStatisticsCaseEvaluator::RimEclipseStatisticsCaseEvaluator( const std::vector<RimEclipseCase*>& sourceCases,
const std::vector<size_t>& timeStepIndices,
const RimStatisticsConfig& statisticsConfig,
RigEclipseCaseData* destinationCase,
RimIdenticalGridCaseGroup* identicalGridCaseGroup )
: m_sourceCases( sourceCases )
, m_statisticsConfig( statisticsConfig )
, m_destinationCase( destinationCase )
, m_reservoirCellCount( 0 )
, m_timeStepIndices( timeStepIndices )
, m_identicalGridCaseGroup( identicalGridCaseGroup )
, m_useZeroAsInactiveCellValue( false )
{
if ( sourceCases.size() > 0 )
{
m_reservoirCellCount = sourceCases[0]->eclipseCaseData()->mainGrid()->globalCellArray().size();
}
CVF_ASSERT( m_destinationCase );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimEclipseStatisticsCaseEvaluator::useZeroAsValueForInActiveCellsBasedOnUnionOfActiveCells()
{
m_useZeroAsInactiveCellValue = true;
}