ResInsight/ApplicationCode/ReservoirDataModel/RigFlowDiagStatCalc.cpp
2020-04-24 11:40:22 +02:00

134 lines
5.6 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigFlowDiagStatCalc.h"
#include "RigCaseCellResultsData.h"
#include "RigFlowDiagResults.h"
#include "RigStatisticsMath.h"
#include "RigWeightedMeanCalc.h"
#include "RimEclipseResultCase.h"
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigFlowDiagStatCalc::RigFlowDiagStatCalc( RigFlowDiagResults* flowDiagResults, const RigFlowDiagResultAddress& resVarAddr )
: m_resVarAddr( resVarAddr )
{
m_resultsData = flowDiagResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::minMaxCellScalarValues( size_t timeStepIndex, double& min, double& max )
{
MinMaxAccumulator minMaxCalc( min, max );
const std::vector<double>* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex );
if ( vals ) minMaxCalc.addData( *vals );
min = minMaxCalc.min;
max = minMaxCalc.max;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::posNegClosestToZero( size_t timeStepIndex, double& pos, double& neg )
{
PosNegAccumulator posNegCalc( pos, neg );
const std::vector<double>* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex );
if ( vals ) posNegCalc.addData( *vals );
pos = posNegCalc.pos;
neg = posNegCalc.neg;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::valueSumAndSampleCount( size_t timeStepIndex, double& valueSum, size_t& sampleCount )
{
SumCountAccumulator sumCountCalc( valueSum, sampleCount );
const std::vector<double>* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex );
if ( vals ) sumCountCalc.addData( *vals );
valueSum = sumCountCalc.valueSum;
sampleCount = sumCountCalc.sampleCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::addDataToHistogramCalculator( size_t timeStepIndex, RigHistogramCalculator& histogramCalculator )
{
const std::vector<double>* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex );
if ( vals ) histogramCalculator.addData( *vals );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::uniqueValues( size_t timeStepIndex, std::set<int>& uniqueValues )
{
const std::vector<double>* vals = m_resultsData->resultValues( m_resVarAddr, timeStepIndex );
if ( vals )
for ( double val : ( *vals ) )
uniqueValues.insert( static_cast<int>( val ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigFlowDiagStatCalc::timeStepCount()
{
return m_resultsData->timeStepCount();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigFlowDiagStatCalc::mobileVolumeWeightedMean( size_t timeStepIndex, double& mean )
{
RimEclipseResultCase* eclCase = nullptr;
m_resultsData->flowDiagSolution()->firstAncestorOrThisOfType( eclCase );
if ( !eclCase ) return;
RigCaseCellResultsData* caseCellResultsData = eclCase->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
RigEclipseResultAddress mobPoreVolResAddr( RiaDefines::ResultCatType::STATIC_NATIVE,
RiaDefines::mobilePoreVolumeName() );
caseCellResultsData->ensureKnownResultLoaded( mobPoreVolResAddr );
const std::vector<double>& weights = caseCellResultsData->cellScalarResults( mobPoreVolResAddr, 0 );
const std::vector<double>* values = m_resultsData->resultValues( m_resVarAddr, timeStepIndex );
const RigActiveCellInfo* actCellInfo = m_resultsData->activeCellInfo( m_resVarAddr );
RigWeightedMeanCalc::weightedMeanOverCells( &weights, values, nullptr, false, actCellInfo, true, &mean );
}