ResInsight/ApplicationLibCode/ProjectDataModel/GeoMech/RimGeoMechContourMapProjection.cpp
Magne Sjaastad f8c5cf389f
clang-format: Set column width to 140
* Set column width to 140
* Use c++20
* Remove redundant virtual
2023-02-26 10:48:40 +01:00

694 lines
30 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RimGeoMechContourMapProjection.h"
#include "RiaImageTools.h"
#include "RiaWeightedGeometricMeanCalculator.h"
#include "RiaWeightedHarmonicMeanCalculator.h"
#include "RiaWeightedMeanCalculator.h"
#include "RigCellGeometryTools.h"
#include "RigFemPart.h"
#include "RigFemPartCollection.h"
#include "RigFemPartGrid.h"
#include "RigFemPartResultsCollection.h"
#include "RigGeoMechCaseData.h"
#include "RigHexIntersectionTools.h"
#include "RimCellFilterCollection.h"
#include "RimGeoMechCase.h"
#include "RimGeoMechCellColors.h"
#include "RimGeoMechContourMapView.h"
#include "RimGeoMechPropertyFilterCollection.h"
#include "RimRegularLegendConfig.h"
#include "RivFemElmVisibilityCalculator.h"
#include "cafPdmUiDoubleSliderEditor.h"
#include "cvfArray.h"
#include "cvfCellRange.h"
#include "cvfGeometryTools.h"
#include "cvfGeometryUtils.h"
#include "cvfScalarMapper.h"
#include "cvfStructGridGeometryGenerator.h"
#include "cvfVector3.h"
#include <QDebug>
#include <algorithm>
#include <array>
CAF_PDM_SOURCE_INIT( RimGeoMechContourMapProjection, "RimGeoMechContourMapProjection" );
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechContourMapProjection::RimGeoMechContourMapProjection()
: m_kLayers( 0u )
{
CAF_PDM_InitObject( "RimContourMapProjection", ":/2DMapProjection16x16.png" );
CAF_PDM_InitField( &m_limitToPorePressureRegions, "LimitToPorRegion", true, "Limit to Pore Pressure regions" );
CAF_PDM_InitField( &m_applyPPRegionLimitVertically, "VerticalLimit", false, "Apply Limit Vertically" );
CAF_PDM_InitField( &m_paddingAroundPorePressureRegion, "PaddingAroundPorRegion", 0.0, "Horizontal Padding around PP regions" );
m_paddingAroundPorePressureRegion.uiCapability()->setUiEditorTypeName( caf::PdmUiDoubleSliderEditor::uiEditorTypeName() );
setName( "Map Projection" );
nameField()->uiCapability()->setUiReadOnly( true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechContourMapProjection::~RimGeoMechContourMapProjection()
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QString RimGeoMechContourMapProjection::resultDescriptionText() const
{
QString resultText = QString( "%1, %2" ).arg( resultAggregationText() ).arg( view()->cellResult()->resultFieldUiName() );
return resultText;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimRegularLegendConfig* RimGeoMechContourMapProjection::legendConfig() const
{
return view()->cellResult()->legendConfig();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::updateLegend()
{
RimGeoMechCellColors* cellColors = view()->cellResult();
double minVal = minValue( m_aggregatedResults );
double maxVal = maxValue( m_aggregatedResults );
std::pair<double, double> minmaxValAllTimeSteps = minmaxValuesAllTimeSteps();
legendConfig()->setAutomaticRanges( minmaxValAllTimeSteps.first, minmaxValAllTimeSteps.second, minVal, maxVal );
QString projectionLegendText = QString( "Map Projection\n%1" ).arg( m_resultAggregation().uiText() );
if ( cellColors->resultAddress().isValid() )
{
projectionLegendText += QString( "\nResult: %1" ).arg( cellColors->resultFieldUiName() );
if ( !cellColors->resultComponentUiName().isEmpty() )
{
projectionLegendText += QString( ", %1" ).arg( cellColors->resultComponentUiName() );
}
}
else
{
projectionLegendText += QString( "\nNo Result Selected" );
}
legendConfig()->setTitle( projectionLegendText );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::sampleSpacing() const
{
RimGeoMechCase* geoMechCase = this->geoMechCase();
if ( geoMechCase )
{
return m_relativeSampleSpacing * geoMechCase->characteristicCellSize();
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<cvf::UByteArray> RimGeoMechContourMapProjection::getCellVisibility() const
{
cvf::ref<cvf::UByteArray> cellGridIdxVisibility = new cvf::UByteArray( m_femPart->elementCount() );
RivFemElmVisibilityCalculator::computeAllVisible( cellGridIdxVisibility.p(), m_femPart.p() );
if ( view()->cellFilterCollection()->isActive() )
{
cvf::CellRangeFilter cellRangeFilter;
view()->cellFilterCollection()->compoundCellRangeFilter( &cellRangeFilter, 0 );
RivFemElmVisibilityCalculator::computeRangeVisibility( cellGridIdxVisibility.p(), m_femPart.p(), cellRangeFilter );
}
if ( view()->propertyFilterCollection()->isActive() )
{
auto [stepIdx, frameIdx] = view()->currentStepAndDataFrame();
RivFemElmVisibilityCalculator::computePropertyVisibility( cellGridIdxVisibility.p(),
m_femPart.p(),
stepIdx,
frameIdx,
cellGridIdxVisibility.p(),
view()->geoMechPropertyFilterCollection() );
}
return cellGridIdxVisibility;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::BoundingBox RimGeoMechContourMapProjection::calculateExpandedPorBarBBox( int timeStep, int frameIndex ) const
{
RigFemResultAddress porBarAddr( RigFemResultPosEnum::RIG_ELEMENT_NODAL,
"POR-Bar",
view()->cellResult()->resultComponentName().toStdString() );
RigGeoMechCaseData* caseData = geoMechCase()->geoMechData();
RigFemPartResultsCollection* resultCollection = caseData->femPartResults();
const std::vector<float>& resultValues = resultCollection->resultValues( porBarAddr, 0, timeStep, frameIndex );
cvf::BoundingBox boundingBox;
if ( resultValues.empty() )
{
return boundingBox;
}
for ( int i = 0; i < m_femPart->elementCount(); ++i )
{
size_t resValueIdx = m_femPart->elementNodeResultIdx( (int)i, 0 );
CVF_ASSERT( resValueIdx < resultValues.size() );
double scalarValue = resultValues[resValueIdx];
bool validPorValue = scalarValue != std::numeric_limits<double>::infinity();
if ( validPorValue )
{
std::array<cvf::Vec3d, 8> hexCorners;
m_femPartGrid->cellCornerVertices( i, hexCorners.data() );
for ( size_t c = 0; c < 8; ++c )
{
boundingBox.add( hexCorners[c] );
}
}
}
cvf::Vec3d boxMin = boundingBox.min();
cvf::Vec3d boxMax = boundingBox.max();
cvf::Vec3d boxExtent = boundingBox.extent();
boxMin.x() -= boxExtent.x() * 0.5 * m_paddingAroundPorePressureRegion();
boxMin.y() -= boxExtent.y() * 0.5 * m_paddingAroundPorePressureRegion();
boxMax.x() += boxExtent.x() * 0.5 * m_paddingAroundPorePressureRegion();
boxMax.y() += boxExtent.y() * 0.5 * m_paddingAroundPorePressureRegion();
return cvf::BoundingBox( boxMin, boxMax );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::updateGridInformation()
{
RimGeoMechCase* geoMechCase = this->geoMechCase();
m_femPart = geoMechCase->geoMechData()->femParts()->part( 0 );
m_femPartGrid = m_femPart->getOrCreateStructGrid();
m_kLayers = m_femPartGrid->cellCountK();
m_femPart->ensureIntersectionSearchTreeIsBuilt();
m_gridBoundingBox = geoMechCase->activeCellsBoundingBox();
if ( m_limitToPorePressureRegions )
{
auto [stepIdx, frameIdx] = view()->currentStepAndDataFrame();
m_expandedBoundingBox = calculateExpandedPorBarBBox( stepIdx, frameIdx );
if ( !m_expandedBoundingBox.isValid() )
{
m_limitToPorePressureRegions = false;
}
}
if ( !m_limitToPorePressureRegions )
{
m_expandedBoundingBox = m_gridBoundingBox;
}
cvf::Vec3d minExpandedPoint = m_expandedBoundingBox.min() - cvf::Vec3d( gridEdgeOffset(), gridEdgeOffset(), 0.0 );
cvf::Vec3d maxExpandedPoint = m_expandedBoundingBox.max() + cvf::Vec3d( gridEdgeOffset(), gridEdgeOffset(), 0.0 );
if ( m_limitToPorePressureRegions && !m_applyPPRegionLimitVertically )
{
minExpandedPoint.z() = m_gridBoundingBox.min().z();
maxExpandedPoint.z() = m_gridBoundingBox.max().z();
}
m_expandedBoundingBox = cvf::BoundingBox( minExpandedPoint, maxExpandedPoint );
m_mapSize = calculateMapSize();
// Re-jig max point to be an exact multiple of cell size
cvf::Vec3d minPoint = m_expandedBoundingBox.min();
cvf::Vec3d maxPoint = m_expandedBoundingBox.max();
maxPoint.x() = minPoint.x() + m_mapSize.x() * sampleSpacing();
maxPoint.y() = minPoint.y() + m_mapSize.y() * sampleSpacing();
m_expandedBoundingBox = cvf::BoundingBox( minPoint, maxPoint );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<bool> RimGeoMechContourMapProjection::getMapCellVisibility()
{
cvf::Vec2ui nCellsIJ = numberOfElementsIJ();
std::vector<std::vector<unsigned int>> distanceImage( nCellsIJ.x(), std::vector<unsigned int>( nCellsIJ.y(), 0u ) );
std::vector<bool> mapCellVisibility;
RigFemResultAddress resAddr = view()->cellResult()->resultAddress();
if ( m_limitToPorePressureRegions )
{
resAddr = RigFemResultAddress( RigFemResultPosEnum::RIG_ELEMENT_NODAL, "POR-Bar", "" );
}
std::vector<double> cellResults = generateResultsFromAddress( resAddr, mapCellVisibility, view()->currentTimeStep() );
mapCellVisibility.resize( numberOfCells(), true );
CVF_ASSERT( mapCellVisibility.size() == cellResults.size() );
{
cvf::BoundingBox validResBoundingBox;
for ( size_t cellIndex = 0; cellIndex < cellResults.size(); ++cellIndex )
{
cvf::Vec2ui ij = ijFromCellIndex( cellIndex );
if ( cellResults[cellIndex] != std::numeric_limits<double>::infinity() )
{
distanceImage[ij.x()][ij.y()] = 1u;
validResBoundingBox.add( cvf::Vec3d( cellCenterPosition( ij.x(), ij.y() ), 0.0 ) );
}
else
{
mapCellVisibility[cellIndex] = false;
}
}
if ( m_limitToPorePressureRegions && m_paddingAroundPorePressureRegion > 0.0 )
{
RiaImageTools::distanceTransform2d( distanceImage );
cvf::Vec3d porExtent = validResBoundingBox.extent();
double radius = std::max( porExtent.x(), porExtent.y() ) * 0.25;
double expansion = m_paddingAroundPorePressureRegion * radius;
size_t cellPadding = std::ceil( expansion / sampleSpacing() );
for ( size_t cellIndex = 0; cellIndex < cellResults.size(); ++cellIndex )
{
if ( !mapCellVisibility[cellIndex] )
{
cvf::Vec2ui ij = ijFromCellIndex( cellIndex );
if ( distanceImage[ij.x()][ij.y()] < cellPadding * cellPadding )
{
mapCellVisibility[cellIndex] = true;
}
}
}
}
}
return mapCellVisibility;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::retrieveParameterWeights()
{
return std::vector<double>();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::generateResults( int viewerStepIndex )
{
RimGeoMechCellColors* cellColors = view()->cellResult();
RigFemResultAddress resultAddress = cellColors->resultAddress();
std::vector<double> aggregatedResults = generateResultsFromAddress( resultAddress, m_mapCellVisibility, viewerStepIndex );
return aggregatedResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::generateResultsFromAddress( RigFemResultAddress resultAddress,
const std::vector<bool>& mapCellVisibility,
int viewerStepIndex )
{
RigGeoMechCaseData* caseData = geoMechCase()->geoMechData();
RigFemPartResultsCollection* resultCollection = caseData->femPartResults();
size_t nCells = numberOfCells();
std::vector<double> aggregatedResults = std::vector<double>( nCells, std::numeric_limits<double>::infinity() );
auto [stepIdx, frameIdx] = caseData->femPartResults()->stepListIndexToTimeStepAndDataFrameIndex( viewerStepIndex );
bool wasInvalid = false;
if ( !resultAddress.isValid() )
{
wasInvalid = true;
resultAddress = RigFemResultAddress( RigFemResultPosEnum::RIG_ELEMENT_NODAL, "POR-Bar", "" );
}
if ( resultAddress.fieldName == "PP" )
{
resultAddress.fieldName = "POR-Bar"; // More likely to be in memory than POR
}
if ( resultAddress.fieldName == "POR-Bar" )
{
resultAddress.resultPosType = RIG_ELEMENT_NODAL;
}
else if ( resultAddress.resultPosType == RIG_FORMATION_NAMES )
{
resultAddress.resultPosType = RIG_ELEMENT_NODAL; // formation indices are stored per element node result.
}
std::vector<float> resultValuesF = resultCollection->resultValues( resultAddress, 0, stepIdx, frameIdx );
if ( resultValuesF.empty() ) return aggregatedResults;
std::vector<double> resultValues = gridCellValues( resultAddress, resultValuesF );
if ( wasInvalid )
{
// For invalid result addresses we just use the POR-Bar result to get the reservoir region
// And display a dummy 0-result in the region.
for ( double& value : resultValues )
{
if ( value != std::numeric_limits<double>::infinity() )
{
value = 0.0;
}
}
}
#pragma omp parallel for
for ( int index = 0; index < static_cast<int>( nCells ); ++index )
{
if ( mapCellVisibility.empty() || mapCellVisibility[index] )
{
cvf::Vec2ui ij = ijFromCellIndex( index );
aggregatedResults[index] = calculateValueInMapCell( ij.x(), ij.y(), resultValues );
}
}
return aggregatedResults;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RimGeoMechContourMapProjection::resultVariableChanged() const
{
RimGeoMechCellColors* cellColors = view()->cellResult();
RigFemResultAddress resAddr = cellColors->resultAddress();
return !m_currentResultAddr.isValid() || !( m_currentResultAddr == resAddr );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::clearResultVariable()
{
m_currentResultAddr = RigFemResultAddress();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGridView* RimGeoMechContourMapProjection::baseView() const
{
return view();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RimGeoMechContourMapProjection::findIntersectingCells( const cvf::BoundingBox& bbox ) const
{
std::vector<size_t> allCellIndices;
m_femPart->findIntersectingCellsWithExistingSearchTree( bbox, &allCellIndices );
return allCellIndices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimGeoMechContourMapProjection::kLayer( size_t globalCellIdx ) const
{
size_t i, j, k;
m_femPartGrid->ijkFromCellIndex( globalCellIdx, &i, &j, &k );
return k;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RimGeoMechContourMapProjection::kLayers() const
{
return m_kLayers;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::calculateOverlapVolume( size_t globalCellIdx, const cvf::BoundingBox& bbox ) const
{
std::array<cvf::Vec3d, 8> hexCorners;
m_femPartGrid->cellCornerVertices( globalCellIdx, hexCorners.data() );
cvf::BoundingBox overlapBBox;
std::array<cvf::Vec3d, 8> overlapCorners;
if ( RigCellGeometryTools::estimateHexOverlapWithBoundingBox( hexCorners, bbox, &overlapCorners, &overlapBBox ) )
{
double overlapVolume = RigCellGeometryTools::calculateCellVolume( overlapCorners );
return overlapVolume;
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::calculateRayLengthInCell( size_t globalCellIdx,
const cvf::Vec3d& highestPoint,
const cvf::Vec3d& lowestPoint ) const
{
std::array<cvf::Vec3d, 8> hexCorners;
const std::vector<cvf::Vec3f>& nodeCoords = m_femPart->nodes().coordinates;
const int* cornerIndices = m_femPart->connectivities( globalCellIdx );
hexCorners[0] = cvf::Vec3d( nodeCoords[cornerIndices[0]] );
hexCorners[1] = cvf::Vec3d( nodeCoords[cornerIndices[1]] );
hexCorners[2] = cvf::Vec3d( nodeCoords[cornerIndices[2]] );
hexCorners[3] = cvf::Vec3d( nodeCoords[cornerIndices[3]] );
hexCorners[4] = cvf::Vec3d( nodeCoords[cornerIndices[4]] );
hexCorners[5] = cvf::Vec3d( nodeCoords[cornerIndices[5]] );
hexCorners[6] = cvf::Vec3d( nodeCoords[cornerIndices[6]] );
hexCorners[7] = cvf::Vec3d( nodeCoords[cornerIndices[7]] );
std::vector<HexIntersectionInfo> intersections;
if ( RigHexIntersectionTools::lineHexCellIntersection( highestPoint, lowestPoint, hexCorners.data(), 0, &intersections ) )
{
double lengthInCell = ( intersections.back().m_intersectionPoint - intersections.front().m_intersectionPoint ).length();
return lengthInCell;
}
return 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RimGeoMechContourMapProjection::getParameterWeightForCell( size_t globalCellIdx, const std::vector<double>& parameterWeights ) const
{
if ( parameterWeights.empty() ) return 1.0;
return parameterWeights[globalCellIdx];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<double> RimGeoMechContourMapProjection::gridCellValues( RigFemResultAddress resAddr, std::vector<float>& resultValues ) const
{
std::vector<double> gridCellValues( m_femPart->elementCount(), std::numeric_limits<double>::infinity() );
for ( size_t globalCellIdx = 0; globalCellIdx < static_cast<size_t>( m_femPart->elementCount() ); ++globalCellIdx )
{
RigElementType elmType = m_femPart->elementType( globalCellIdx );
if ( !( elmType == HEX8 || elmType == HEX8P ) ) continue;
if ( resAddr.resultPosType == RIG_ELEMENT )
{
gridCellValues[globalCellIdx] = static_cast<double>( resultValues[globalCellIdx] );
}
else if ( resAddr.resultPosType == RIG_ELEMENT_NODAL )
{
RiaWeightedMeanCalculator<float> cellAverage;
for ( int i = 0; i < 8; ++i )
{
size_t gridResultValueIdx =
m_femPart->resultValueIdxFromResultPosType( resAddr.resultPosType, static_cast<int>( globalCellIdx ), i );
cellAverage.addValueAndWeight( resultValues[gridResultValueIdx], 1.0 );
}
gridCellValues[globalCellIdx] = static_cast<double>( cellAverage.weightedMean() );
}
else
{
RiaWeightedMeanCalculator<float> cellAverage;
const int* elmNodeIndices = m_femPart->connectivities( globalCellIdx );
for ( int i = 0; i < 8; ++i )
{
cellAverage.addValueAndWeight( resultValues[elmNodeIndices[i]], 1.0 );
}
gridCellValues[globalCellIdx] = static_cast<double>( cellAverage.weightedMean() );
}
}
return gridCellValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechCase* RimGeoMechContourMapProjection::geoMechCase() const
{
RimGeoMechCase* geoMechCase = nullptr;
firstAncestorOrThisOfType( geoMechCase );
return geoMechCase;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RimGeoMechContourMapView* RimGeoMechContourMapProjection::view() const
{
RimGeoMechContourMapView* view = nullptr;
firstAncestorOrThisOfTypeAsserted( view );
return view;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::updateAfterResultGeneration( int timeStep )
{
m_currentResultTimestep = timeStep;
RimGeoMechCellColors* cellColors = view()->cellResult();
RigFemResultAddress resAddr = cellColors->resultAddress();
m_currentResultAddr = resAddr;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::fieldChangedByUi( const caf::PdmFieldHandle* changedField, const QVariant& oldValue, const QVariant& newValue )
{
RimContourMapProjection::fieldChangedByUi( changedField, oldValue, newValue );
if ( changedField == &m_limitToPorePressureRegions || changedField == &m_applyPPRegionLimitVertically ||
changedField == &m_paddingAroundPorePressureRegion )
{
clearGridMapping();
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QList<caf::PdmOptionItemInfo> RimGeoMechContourMapProjection::calculateValueOptions( const caf::PdmFieldHandle* fieldNeedingOptions )
{
QList<caf::PdmOptionItemInfo> options;
if ( fieldNeedingOptions == &m_resultAggregation )
{
std::vector<ResultAggregationEnum> validOptions =
{ RESULTS_TOP_VALUE, RESULTS_MEAN_VALUE, RESULTS_GEOM_VALUE, RESULTS_HARM_VALUE, RESULTS_MIN_VALUE, RESULTS_MAX_VALUE, RESULTS_SUM };
for ( ResultAggregationEnum option : validOptions )
{
options.push_back( caf::PdmOptionItemInfo( ResultAggregation::uiText( option ), option ) );
}
}
return options;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::defineUiOrdering( QString uiConfigName, caf::PdmUiOrdering& uiOrdering )
{
RimContourMapProjection::defineUiOrdering( uiConfigName, uiOrdering );
caf::PdmUiGroup* group = uiOrdering.addNewGroup( "Map Boundaries" );
group->add( &m_limitToPorePressureRegions );
group->add( &m_applyPPRegionLimitVertically );
group->add( &m_paddingAroundPorePressureRegion );
m_applyPPRegionLimitVertically.uiCapability()->setUiReadOnly( !m_limitToPorePressureRegions() );
m_paddingAroundPorePressureRegion.uiCapability()->setUiReadOnly( !m_limitToPorePressureRegions() );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RimGeoMechContourMapProjection::defineEditorAttribute( const caf::PdmFieldHandle* field,
QString uiConfigName,
caf::PdmUiEditorAttribute* attribute )
{
RimContourMapProjection::defineEditorAttribute( field, uiConfigName, attribute );
if ( field == &m_paddingAroundPorePressureRegion )
{
caf::PdmUiDoubleSliderEditorAttribute* myAttr = dynamic_cast<caf::PdmUiDoubleSliderEditorAttribute*>( attribute );
if ( myAttr )
{
myAttr->m_minimum = 0.0;
myAttr->m_maximum = 2.0;
myAttr->m_sliderTickCount = 4;
myAttr->m_delaySliderUpdateUntilRelease = true;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<double, double> RimGeoMechContourMapProjection::minmaxValuesAllTimeSteps()
{
if ( !resultRangeIsValid() )
{
clearTimeStepRange();
m_minResultAllTimeSteps = std::min( m_minResultAllTimeSteps, minValue( m_aggregatedResults ) );
m_maxResultAllTimeSteps = std::max( m_maxResultAllTimeSteps, maxValue( m_aggregatedResults ) );
if ( geoMechCase() && geoMechCase()->geoMechData() && geoMechCase()->geoMechData()->femPartResults() )
{
int steps = geoMechCase()->geoMechData()->femPartResults()->totalSteps();
for ( int stepIdx = 0; stepIdx < steps; stepIdx++ )
{
if ( stepIdx == m_currentResultTimestep ) continue;
std::vector<double> aggregatedResults = generateResults( stepIdx );
m_minResultAllTimeSteps = std::min( m_minResultAllTimeSteps, minValue( aggregatedResults ) );
m_maxResultAllTimeSteps = std::max( m_maxResultAllTimeSteps, maxValue( aggregatedResults ) );
}
}
}
return std::make_pair( m_minResultAllTimeSteps, m_maxResultAllTimeSteps );
}