mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-09 23:53:04 -06:00
254 lines
10 KiB
C++
254 lines
10 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2018 Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigEclipseToStimPlanCalculator.h"
|
|
|
|
#include "RiaLogging.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigCellGeometryTools.h"
|
|
#include "RigEclipseCaseData.h"
|
|
#include "RigFractureCell.h"
|
|
#include "RigFractureGrid.h"
|
|
#include "RigFractureTransmissibilityEquations.h"
|
|
#include "RigHexIntersectionTools.h"
|
|
#include "RigMainGrid.h"
|
|
#include "RigResultAccessorFactory.h"
|
|
#include "RigTransmissibilityCondenser.h"
|
|
|
|
#include "RiaWeightedMeanCalculator.h"
|
|
#include "RimEclipseCase.h"
|
|
#include "RimEllipseFractureTemplate.h"
|
|
#include "RimFracture.h"
|
|
#include "RimFractureContainmentTools.h"
|
|
#include "RimStimPlanFractureTemplate.h"
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigEclipseToStimPlanCalculator::RigEclipseToStimPlanCalculator(const RimEclipseCase* caseToApply,
|
|
cvf::Mat4d fractureTransform,
|
|
double skinFactor,
|
|
double cDarcy,
|
|
const RigFractureGrid& fractureGrid,
|
|
const RimFracture* fracture)
|
|
: m_case(caseToApply)
|
|
, m_fractureTransform(fractureTransform)
|
|
, m_fractureSkinFactor(skinFactor)
|
|
, m_cDarcy(cDarcy)
|
|
, m_fractureGrid(fractureGrid)
|
|
, m_fracture(fracture)
|
|
{
|
|
computeValues();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigEclipseToStimPlanCalculator::computeValues()
|
|
{
|
|
auto reservoirCellIndicesOpenForFlow = RimFractureContainmentTools::reservoirCellIndicesOpenForFlow(m_case, m_fracture);
|
|
|
|
for (size_t i = 0; i < m_fractureGrid.fractureCells().size(); i++)
|
|
{
|
|
const RigFractureCell& fractureCell = m_fractureGrid.fractureCells()[i];
|
|
if (!fractureCell.hasNonZeroConductivity()) continue;
|
|
|
|
RigEclipseToStimPlanCellTransmissibilityCalculator eclToFractureTransCalc(m_case,
|
|
m_fractureTransform,
|
|
m_fractureSkinFactor,
|
|
m_cDarcy,
|
|
fractureCell,
|
|
reservoirCellIndicesOpenForFlow,
|
|
m_fracture);
|
|
|
|
const std::vector<size_t>& fractureCellContributingEclipseCells =
|
|
eclToFractureTransCalc.globalIndiciesToContributingEclipseCells();
|
|
|
|
if (!fractureCellContributingEclipseCells.empty())
|
|
{
|
|
m_singleFractureCellCalculators.emplace(i, eclToFractureTransCalc);
|
|
}
|
|
}
|
|
}
|
|
|
|
using CellIdxSpace = RigTransmissibilityCondenser::CellAddress;
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigEclipseToStimPlanCalculator::appendDataToTransmissibilityCondenser(bool useFiniteConductivityInFracture,
|
|
RigTransmissibilityCondenser* condenser) const
|
|
{
|
|
for (const auto& eclToFractureTransCalc : m_singleFractureCellCalculators)
|
|
{
|
|
const std::vector<size_t>& fractureCellContributingEclipseCells =
|
|
eclToFractureTransCalc.second.globalIndiciesToContributingEclipseCells();
|
|
|
|
const std::vector<double>& fractureCellContributingEclipseCellTransmissibilities =
|
|
eclToFractureTransCalc.second.contributingEclipseCellTransmissibilities();
|
|
|
|
size_t stimPlanCellIndex = eclToFractureTransCalc.first;
|
|
|
|
for (size_t i = 0; i < fractureCellContributingEclipseCells.size(); i++)
|
|
{
|
|
if (useFiniteConductivityInFracture)
|
|
{
|
|
condenser->addNeighborTransmissibility({true, CellIdxSpace::ECLIPSE, fractureCellContributingEclipseCells[i]},
|
|
{false, CellIdxSpace::STIMPLAN, stimPlanCellIndex},
|
|
fractureCellContributingEclipseCellTransmissibilities[i]);
|
|
}
|
|
else
|
|
{
|
|
condenser->addNeighborTransmissibility({true, CellIdxSpace::ECLIPSE, fractureCellContributingEclipseCells[i]},
|
|
{true, CellIdxSpace::WELL, 1},
|
|
fractureCellContributingEclipseCellTransmissibilities[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCalculator::totalEclipseAreaOpenForFlow() const
|
|
{
|
|
double area = 0.0;
|
|
|
|
for (const auto& singleCellCalc : m_singleFractureCellCalculators)
|
|
{
|
|
double cellArea = singleCellCalc.second.areaOpenForFlow();
|
|
|
|
area += cellArea;
|
|
}
|
|
|
|
return area;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCalculator::areaWeightedMatrixTransmissibility() const
|
|
{
|
|
RiaWeightedMeanCalculator<double> calc;
|
|
|
|
for (const auto& singleCellCalc : m_singleFractureCellCalculators)
|
|
{
|
|
const RigEclipseToStimPlanCellTransmissibilityCalculator& calulator = singleCellCalc.second;
|
|
|
|
calc.addValueAndWeight(calulator.aggregatedMatrixTransmissibility(), calulator.areaOpenForFlow());
|
|
}
|
|
|
|
return calc.weightedMean();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCalculator::areaWeightedWidth() const
|
|
{
|
|
double width = 0.0;
|
|
|
|
auto ellipseFractureTemplate = dynamic_cast<const RimEllipseFractureTemplate*>(m_fracture->fractureTemplate());
|
|
if (ellipseFractureTemplate)
|
|
{
|
|
width = ellipseFractureTemplate->width();
|
|
}
|
|
|
|
auto stimPlanFractureTemplate = dynamic_cast<const RimStimPlanFractureTemplate*>(m_fracture->fractureTemplate());
|
|
if (stimPlanFractureTemplate)
|
|
{
|
|
auto widthValues = stimPlanFractureTemplate->widthResultValues();
|
|
if (!widthValues.empty())
|
|
{
|
|
RiaWeightedMeanCalculator<double> calc;
|
|
|
|
for (const auto& singleCellCalc : m_singleFractureCellCalculators)
|
|
{
|
|
double cellArea = singleCellCalc.second.areaOpenForFlow();
|
|
|
|
size_t globalStimPlanCellIndex = singleCellCalc.first;
|
|
double widthValue = widthValues[globalStimPlanCellIndex];
|
|
|
|
calc.addValueAndWeight(widthValue, cellArea);
|
|
}
|
|
|
|
width = calc.weightedMean();
|
|
}
|
|
else
|
|
{
|
|
width = stimPlanFractureTemplate->computeFractureWidth(m_fracture);
|
|
}
|
|
}
|
|
|
|
return width;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCalculator::areaWeightedConductivity() const
|
|
{
|
|
RiaWeightedMeanCalculator<double> calc;
|
|
|
|
for (const auto& singleCellCalc : m_singleFractureCellCalculators)
|
|
{
|
|
double cellArea = singleCellCalc.second.areaOpenForFlow();
|
|
|
|
calc.addValueAndWeight(singleCellCalc.second.fractureCell().getConductivityValue(), cellArea);
|
|
}
|
|
|
|
return calc.weightedMean();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCalculator::longestYSectionOpenForFlow() const
|
|
{
|
|
// For each I, find the longest aggregated distance along J with continuous fracture cells with conductivity above zero
|
|
// connected to Eclipse cells open for flow
|
|
|
|
double longestRange = 0.0;
|
|
|
|
for (size_t i = 0; i < m_fractureGrid.iCellCount(); i++)
|
|
{
|
|
double currentAggregatedDistanceY = 0.0;
|
|
for (size_t j = 0; j < m_fractureGrid.jCellCount(); j++)
|
|
{
|
|
size_t globalStimPlanCellIndex = m_fractureGrid.getGlobalIndexFromIJ(i, j);
|
|
|
|
auto calculatorForCell = m_singleFractureCellCalculators.find(globalStimPlanCellIndex);
|
|
if (calculatorForCell != m_singleFractureCellCalculators.end())
|
|
{
|
|
currentAggregatedDistanceY += calculatorForCell->second.fractureCell().cellSizeZ();
|
|
}
|
|
else
|
|
{
|
|
longestRange = std::max(longestRange, currentAggregatedDistanceY);
|
|
currentAggregatedDistanceY = 0.0;
|
|
}
|
|
}
|
|
|
|
longestRange = std::max(longestRange, currentAggregatedDistanceY);
|
|
}
|
|
|
|
return longestRange;
|
|
}
|