ResInsight/ApplicationCode/ReservoirDataModel/Completions/RigEclipseToStimPlanCellTransmissibilityCalculator.cpp

351 lines
15 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigCellGeometryTools.h"
#include "RigEclipseCaseData.h"
#include "RigFractureCell.h"
#include "RigFractureTransmissibilityEquations.h"
#include "RigHexIntersectionTools.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RimEclipseCase.h"
#include "RimFracture.h"
#include "RiaLogging.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseToStimPlanCellTransmissibilityCalculator::RigEclipseToStimPlanCellTransmissibilityCalculator(
const RimEclipseCase* caseToApply,
cvf::Mat4d fractureTransform,
double skinFactor,
double cDarcy,
const RigFractureCell& stimPlanCell,
const std::set<size_t>& reservoirCellIndicesOpenForFlow,
const RimFracture* fracture)
: m_case(caseToApply)
, m_fractureTransform(fractureTransform)
, m_fractureSkinFactor(skinFactor)
, m_cDarcy(cDarcy)
, m_stimPlanCell(stimPlanCell)
, m_fracture(fracture)
{
calculateStimPlanCellsMatrixTransmissibility(reservoirCellIndicesOpenForFlow);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigEclipseToStimPlanCellTransmissibilityCalculator::globalIndiciesToContributingEclipseCells() const
{
return m_globalIndiciesToContributingEclipseCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigEclipseToStimPlanCellTransmissibilityCalculator::contributingEclipseCellTransmissibilities() const
{
return m_contributingEclipseCellTransmissibilities;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCellTransmissibilityCalculator::areaOpenForFlow() const
{
double area = 0.0;
for (const auto& areaForOneEclipseCell : m_contributingEclipseCellAreas)
{
area += areaForOneEclipseCell;
}
return area;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCellTransmissibilityCalculator::aggregatedMatrixTransmissibility() const
{
double totalTransmissibility = 0.0;
for (const auto& trans : m_contributingEclipseCellTransmissibilities)
{
totalTransmissibility += trans;
}
return totalTransmissibility;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigFractureCell& RigEclipseToStimPlanCellTransmissibilityCalculator::fractureCell() const
{
return m_stimPlanCell;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QString> RigEclipseToStimPlanCellTransmissibilityCalculator::requiredResultNames()
{
std::vector<QString> resultNames;
resultNames.push_back("PERMX");
resultNames.push_back("PERMY");
resultNames.push_back("PERMZ");
resultNames.push_back("DX");
resultNames.push_back("DY");
resultNames.push_back("DZ");
return resultNames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<QString> RigEclipseToStimPlanCellTransmissibilityCalculator::optionalResultNames()
{
std::vector<QString> resultNames;
resultNames.push_back("NTG");
return resultNames;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsMatrixTransmissibility(
const std::set<size_t>& reservoirCellIndicesOpenForFlow)
{
// Not calculating flow into fracture if stimPlan cell cond value is 0 (assumed to be outside the fracture):
if (m_stimPlanCell.getConductivityValue() < 1e-7) return;
const RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData();
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
cvf::ref<RigResultAccessor> dataAccessObjectDx = createResultAccessor(m_case, "DX");
cvf::ref<RigResultAccessor> dataAccessObjectDy = createResultAccessor(m_case, "DY");
cvf::ref<RigResultAccessor> dataAccessObjectDz = createResultAccessor(m_case, "DZ");
if (dataAccessObjectDx.isNull() || dataAccessObjectDy.isNull() || dataAccessObjectDz.isNull())
{
RiaLogging::error("Data for DX/DY/DZ is not complete, and these values are required for export of COMPDAT. Make sure "
"'Preferences->Compute DEPTH Related Properties' is checked.");
return;
}
cvf::ref<RigResultAccessor> dataAccessObjectPermX = createResultAccessor(m_case, "PERMX");
cvf::ref<RigResultAccessor> dataAccessObjectPermY = createResultAccessor(m_case, "PERMY");
cvf::ref<RigResultAccessor> dataAccessObjectPermZ = createResultAccessor(m_case, "PERMZ");
if (dataAccessObjectPermX.isNull() || dataAccessObjectPermY.isNull() || dataAccessObjectPermZ.isNull())
{
RiaLogging::error("Data for PERMX/PERMY/PERMZ is not complete, and these values are required for export of COMPDAT.");
return;
}
cvf::ref<RigResultAccessor> dataAccessObjectNTG = createResultAccessor(m_case, "NTG");
const RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel);
std::vector<cvf::Vec3d> stimPlanPolygonTransformed;
for (cvf::Vec3d v : m_stimPlanCell.getPolygon())
{
v.transformPoint(m_fractureTransform);
stimPlanPolygonTransformed.push_back(v);
}
std::vector<size_t> reservoirCellIndices = getPotentiallyFracturedCellsForPolygon(stimPlanPolygonTransformed);
for (size_t reservoirCellIndex : reservoirCellIndices)
{
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
if (!m_fracture->isEclipseCellOpenForFlow(mainGrid, reservoirCellIndicesOpenForFlow, reservoirCellIndex)) continue;
std::array<cvf::Vec3d, 8> hexCorners;
mainGrid->cellCornerVertices(reservoirCellIndex, hexCorners.data());
std::vector<std::vector<cvf::Vec3d>> planeCellPolygons;
bool isPlanIntersected =
RigHexIntersectionTools::planeHexIntersectionPolygons(hexCorners, m_fractureTransform, planeCellPolygons);
if (!isPlanIntersected || planeCellPolygons.empty()) continue;
cvf::Vec3d localX;
cvf::Vec3d localY;
cvf::Vec3d localZ;
RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ);
// Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
cvf::Mat4d invertedTransMatrix = m_fractureTransform.getInverted();
for (std::vector<cvf::Vec3d>& planeCellPolygon : planeCellPolygons)
{
for (cvf::Vec3d& v : planeCellPolygon)
{
v.transformPoint(invertedTransMatrix);
}
}
std::vector<std::vector<cvf::Vec3d>> polygonsForStimPlanCellInEclipseCell;
cvf::Vec3d areaVector;
std::vector<cvf::Vec3d> stimPlanPolygon = m_stimPlanCell.getPolygon();
for (const std::vector<cvf::Vec3d>& planeCellPolygon : planeCellPolygons)
{
std::vector<std::vector<cvf::Vec3d>> clippedPolygons =
RigCellGeometryTools::intersectPolygons(planeCellPolygon, stimPlanPolygon);
for (const std::vector<cvf::Vec3d>& clippedPolygon : clippedPolygons)
{
polygonsForStimPlanCellInEclipseCell.push_back(clippedPolygon);
}
}
if (polygonsForStimPlanCellInEclipseCell.empty()) continue;
std::vector<double> areaOfFractureParts;
double length;
std::vector<double> lengthXareaOfFractureParts;
double Ax = 0.0;
double Ay = 0.0;
double Az = 0.0;
for (const std::vector<cvf::Vec3d>& fracturePartPolygon : polygonsForStimPlanCellInEclipseCell)
{
areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon);
double area = areaVector.length();
areaOfFractureParts.push_back(area);
length = RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea(fracturePartPolygon);
lengthXareaOfFractureParts.push_back(length * area);
cvf::Plane fracturePlane;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m_fractureTransform.translation()),
static_cast<cvf::Vec3d>(m_fractureTransform.col(2)));
Ax += fabs(area * (fracturePlane.normal().dot(localY)));
Ay += fabs(area * (fracturePlane.normal().dot(localX)));
Az += fabs(area * (fracturePlane.normal().dot(localZ)));
}
double fractureArea = 0.0;
for (double area : areaOfFractureParts)
fractureArea += area;
double totalAreaXLength = 0.0;
for (double lengtXarea : lengthXareaOfFractureParts)
totalAreaXLength += lengtXarea;
double fractureAreaWeightedlength = totalAreaXLength / fractureArea;
// Transmissibility for inactive cells is set to zero
// Inactive cells must be include in order to compute the fractured area correctly
double transmissibility = 0.0;
bool isActive = true;
{
// Use main grid cell to evaluate if a cell is active or not.
// All cells in temporary grids are active
const RigCell& cell = mainGrid->globalCellArray()[reservoirCellIndex];
size_t mainGridReservoirIndex = cell.mainGridCellIndex();
if (!activeCellInfo->isActive(mainGridReservoirIndex))
{
isActive = false;
}
}
if (isActive)
{
double permX = dataAccessObjectPermX->cellScalarGlobIdx(reservoirCellIndex);
double permY = dataAccessObjectPermY->cellScalarGlobIdx(reservoirCellIndex);
double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(reservoirCellIndex);
double dx = dataAccessObjectDx->cellScalarGlobIdx(reservoirCellIndex);
double dy = dataAccessObjectDy->cellScalarGlobIdx(reservoirCellIndex);
double dz = dataAccessObjectDz->cellScalarGlobIdx(reservoirCellIndex);
double NTG = 1.0;
if (dataAccessObjectNTG.notNull())
{
NTG = dataAccessObjectNTG->cellScalarGlobIdx(reservoirCellIndex);
}
double transmissibility_X = RigFractureTransmissibilityEquations::matrixToFractureTrans(
permY, NTG, Ay, dx, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
double transmissibility_Y = RigFractureTransmissibilityEquations::matrixToFractureTrans(
permX, NTG, Ax, dy, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
double transmissibility_Z = RigFractureTransmissibilityEquations::matrixToFractureTrans(
permZ, 1.0, Az, dz, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
transmissibility = sqrt(transmissibility_X * transmissibility_X + transmissibility_Y * transmissibility_Y +
transmissibility_Z * transmissibility_Z);
}
m_globalIndiciesToContributingEclipseCells.push_back(reservoirCellIndex);
m_contributingEclipseCellTransmissibilities.push_back(transmissibility);
m_contributingEclipseCellAreas.push_back(fractureArea);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigEclipseToStimPlanCellTransmissibilityCalculator::getPotentiallyFracturedCellsForPolygon(
const std::vector<cvf::Vec3d>& polygon) const
{
std::vector<size_t> cellIndices;
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
if (!mainGrid) return cellIndices;
cvf::BoundingBox polygonBBox;
for (const cvf::Vec3d& nodeCoord : polygon)
{
polygonBBox.add(nodeCoord);
}
mainGrid->findIntersectingCells(polygonBBox, &cellIndices);
return cellIndices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::ref<RigResultAccessor>
RigEclipseToStimPlanCellTransmissibilityCalculator::createResultAccessor(const RimEclipseCase* eclipseCase,
const QString& uiResultName)
{
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
const RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
// Create result accessor object for main grid at time step zero (static result date is always at first time step
return RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, uiResultName);
}