mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-24 23:36:50 -06:00
351 lines
15 KiB
C++
351 lines
15 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2017 Statoil ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigCellGeometryTools.h"
|
|
#include "RigEclipseCaseData.h"
|
|
#include "RigFractureCell.h"
|
|
#include "RigFractureTransmissibilityEquations.h"
|
|
#include "RigHexIntersectionTools.h"
|
|
#include "RigMainGrid.h"
|
|
#include "RigResultAccessorFactory.h"
|
|
|
|
#include "RimEclipseCase.h"
|
|
#include "RimFracture.h"
|
|
|
|
#include "RiaLogging.h"
|
|
|
|
#include "cvfGeometryTools.h"
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RigEclipseToStimPlanCellTransmissibilityCalculator::RigEclipseToStimPlanCellTransmissibilityCalculator(
|
|
const RimEclipseCase* caseToApply,
|
|
cvf::Mat4d fractureTransform,
|
|
double skinFactor,
|
|
double cDarcy,
|
|
const RigFractureCell& stimPlanCell,
|
|
const std::set<size_t>& reservoirCellIndicesOpenForFlow,
|
|
const RimFracture* fracture)
|
|
: m_case(caseToApply)
|
|
, m_fractureTransform(fractureTransform)
|
|
, m_fractureSkinFactor(skinFactor)
|
|
, m_cDarcy(cDarcy)
|
|
, m_stimPlanCell(stimPlanCell)
|
|
, m_fracture(fracture)
|
|
{
|
|
calculateStimPlanCellsMatrixTransmissibility(reservoirCellIndicesOpenForFlow);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const std::vector<size_t>& RigEclipseToStimPlanCellTransmissibilityCalculator::globalIndiciesToContributingEclipseCells() const
|
|
{
|
|
return m_globalIndiciesToContributingEclipseCells;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const std::vector<double>& RigEclipseToStimPlanCellTransmissibilityCalculator::contributingEclipseCellTransmissibilities() const
|
|
{
|
|
return m_contributingEclipseCellTransmissibilities;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCellTransmissibilityCalculator::areaOpenForFlow() const
|
|
{
|
|
double area = 0.0;
|
|
|
|
for (const auto& areaForOneEclipseCell : m_contributingEclipseCellAreas)
|
|
{
|
|
area += areaForOneEclipseCell;
|
|
}
|
|
|
|
return area;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RigEclipseToStimPlanCellTransmissibilityCalculator::aggregatedMatrixTransmissibility() const
|
|
{
|
|
double totalTransmissibility = 0.0;
|
|
|
|
for (const auto& trans : m_contributingEclipseCellTransmissibilities)
|
|
{
|
|
totalTransmissibility += trans;
|
|
}
|
|
|
|
return totalTransmissibility;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
const RigFractureCell& RigEclipseToStimPlanCellTransmissibilityCalculator::fractureCell() const
|
|
{
|
|
return m_stimPlanCell;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<QString> RigEclipseToStimPlanCellTransmissibilityCalculator::requiredResultNames()
|
|
{
|
|
std::vector<QString> resultNames;
|
|
resultNames.push_back("PERMX");
|
|
resultNames.push_back("PERMY");
|
|
resultNames.push_back("PERMZ");
|
|
|
|
resultNames.push_back("DX");
|
|
resultNames.push_back("DY");
|
|
resultNames.push_back("DZ");
|
|
|
|
return resultNames;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<QString> RigEclipseToStimPlanCellTransmissibilityCalculator::optionalResultNames()
|
|
{
|
|
std::vector<QString> resultNames;
|
|
resultNames.push_back("NTG");
|
|
|
|
return resultNames;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsMatrixTransmissibility(
|
|
const std::set<size_t>& reservoirCellIndicesOpenForFlow)
|
|
{
|
|
// Not calculating flow into fracture if stimPlan cell cond value is 0 (assumed to be outside the fracture):
|
|
if (m_stimPlanCell.getConductivityValue() < 1e-7) return;
|
|
|
|
const RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData();
|
|
|
|
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
|
|
|
|
cvf::ref<RigResultAccessor> dataAccessObjectDx = createResultAccessor(m_case, "DX");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectDy = createResultAccessor(m_case, "DY");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectDz = createResultAccessor(m_case, "DZ");
|
|
if (dataAccessObjectDx.isNull() || dataAccessObjectDy.isNull() || dataAccessObjectDz.isNull())
|
|
{
|
|
RiaLogging::error("Data for DX/DY/DZ is not complete, and these values are required for export of COMPDAT. Make sure "
|
|
"'Preferences->Compute DEPTH Related Properties' is checked.");
|
|
|
|
return;
|
|
}
|
|
|
|
cvf::ref<RigResultAccessor> dataAccessObjectPermX = createResultAccessor(m_case, "PERMX");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectPermY = createResultAccessor(m_case, "PERMY");
|
|
cvf::ref<RigResultAccessor> dataAccessObjectPermZ = createResultAccessor(m_case, "PERMZ");
|
|
if (dataAccessObjectPermX.isNull() || dataAccessObjectPermY.isNull() || dataAccessObjectPermZ.isNull())
|
|
{
|
|
RiaLogging::error("Data for PERMX/PERMY/PERMZ is not complete, and these values are required for export of COMPDAT.");
|
|
|
|
return;
|
|
}
|
|
|
|
cvf::ref<RigResultAccessor> dataAccessObjectNTG = createResultAccessor(m_case, "NTG");
|
|
|
|
const RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel);
|
|
|
|
std::vector<cvf::Vec3d> stimPlanPolygonTransformed;
|
|
for (cvf::Vec3d v : m_stimPlanCell.getPolygon())
|
|
{
|
|
v.transformPoint(m_fractureTransform);
|
|
stimPlanPolygonTransformed.push_back(v);
|
|
}
|
|
|
|
std::vector<size_t> reservoirCellIndices = getPotentiallyFracturedCellsForPolygon(stimPlanPolygonTransformed);
|
|
for (size_t reservoirCellIndex : reservoirCellIndices)
|
|
{
|
|
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
|
|
if (!m_fracture->isEclipseCellOpenForFlow(mainGrid, reservoirCellIndicesOpenForFlow, reservoirCellIndex)) continue;
|
|
|
|
std::array<cvf::Vec3d, 8> hexCorners;
|
|
mainGrid->cellCornerVertices(reservoirCellIndex, hexCorners.data());
|
|
|
|
std::vector<std::vector<cvf::Vec3d>> planeCellPolygons;
|
|
bool isPlanIntersected =
|
|
RigHexIntersectionTools::planeHexIntersectionPolygons(hexCorners, m_fractureTransform, planeCellPolygons);
|
|
if (!isPlanIntersected || planeCellPolygons.empty()) continue;
|
|
|
|
cvf::Vec3d localX;
|
|
cvf::Vec3d localY;
|
|
cvf::Vec3d localZ;
|
|
RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ);
|
|
|
|
// Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
|
|
cvf::Mat4d invertedTransMatrix = m_fractureTransform.getInverted();
|
|
for (std::vector<cvf::Vec3d>& planeCellPolygon : planeCellPolygons)
|
|
{
|
|
for (cvf::Vec3d& v : planeCellPolygon)
|
|
{
|
|
v.transformPoint(invertedTransMatrix);
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<cvf::Vec3d>> polygonsForStimPlanCellInEclipseCell;
|
|
cvf::Vec3d areaVector;
|
|
std::vector<cvf::Vec3d> stimPlanPolygon = m_stimPlanCell.getPolygon();
|
|
|
|
for (const std::vector<cvf::Vec3d>& planeCellPolygon : planeCellPolygons)
|
|
{
|
|
std::vector<std::vector<cvf::Vec3d>> clippedPolygons =
|
|
RigCellGeometryTools::intersectPolygons(planeCellPolygon, stimPlanPolygon);
|
|
for (const std::vector<cvf::Vec3d>& clippedPolygon : clippedPolygons)
|
|
{
|
|
polygonsForStimPlanCellInEclipseCell.push_back(clippedPolygon);
|
|
}
|
|
}
|
|
|
|
if (polygonsForStimPlanCellInEclipseCell.empty()) continue;
|
|
|
|
std::vector<double> areaOfFractureParts;
|
|
double length;
|
|
std::vector<double> lengthXareaOfFractureParts;
|
|
double Ax = 0.0;
|
|
double Ay = 0.0;
|
|
double Az = 0.0;
|
|
|
|
for (const std::vector<cvf::Vec3d>& fracturePartPolygon : polygonsForStimPlanCellInEclipseCell)
|
|
{
|
|
areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon);
|
|
double area = areaVector.length();
|
|
areaOfFractureParts.push_back(area);
|
|
|
|
length = RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea(fracturePartPolygon);
|
|
lengthXareaOfFractureParts.push_back(length * area);
|
|
|
|
cvf::Plane fracturePlane;
|
|
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m_fractureTransform.translation()),
|
|
static_cast<cvf::Vec3d>(m_fractureTransform.col(2)));
|
|
|
|
Ax += fabs(area * (fracturePlane.normal().dot(localY)));
|
|
Ay += fabs(area * (fracturePlane.normal().dot(localX)));
|
|
Az += fabs(area * (fracturePlane.normal().dot(localZ)));
|
|
}
|
|
|
|
double fractureArea = 0.0;
|
|
for (double area : areaOfFractureParts)
|
|
fractureArea += area;
|
|
|
|
double totalAreaXLength = 0.0;
|
|
for (double lengtXarea : lengthXareaOfFractureParts)
|
|
totalAreaXLength += lengtXarea;
|
|
|
|
double fractureAreaWeightedlength = totalAreaXLength / fractureArea;
|
|
|
|
// Transmissibility for inactive cells is set to zero
|
|
// Inactive cells must be include in order to compute the fractured area correctly
|
|
double transmissibility = 0.0;
|
|
|
|
bool isActive = true;
|
|
{
|
|
// Use main grid cell to evaluate if a cell is active or not.
|
|
// All cells in temporary grids are active
|
|
const RigCell& cell = mainGrid->globalCellArray()[reservoirCellIndex];
|
|
size_t mainGridReservoirIndex = cell.mainGridCellIndex();
|
|
|
|
if (!activeCellInfo->isActive(mainGridReservoirIndex))
|
|
{
|
|
isActive = false;
|
|
}
|
|
}
|
|
|
|
if (isActive)
|
|
{
|
|
double permX = dataAccessObjectPermX->cellScalarGlobIdx(reservoirCellIndex);
|
|
double permY = dataAccessObjectPermY->cellScalarGlobIdx(reservoirCellIndex);
|
|
double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(reservoirCellIndex);
|
|
|
|
double dx = dataAccessObjectDx->cellScalarGlobIdx(reservoirCellIndex);
|
|
double dy = dataAccessObjectDy->cellScalarGlobIdx(reservoirCellIndex);
|
|
double dz = dataAccessObjectDz->cellScalarGlobIdx(reservoirCellIndex);
|
|
|
|
double NTG = 1.0;
|
|
if (dataAccessObjectNTG.notNull())
|
|
{
|
|
NTG = dataAccessObjectNTG->cellScalarGlobIdx(reservoirCellIndex);
|
|
}
|
|
|
|
double transmissibility_X = RigFractureTransmissibilityEquations::matrixToFractureTrans(
|
|
permY, NTG, Ay, dx, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
|
|
double transmissibility_Y = RigFractureTransmissibilityEquations::matrixToFractureTrans(
|
|
permX, NTG, Ax, dy, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
|
|
double transmissibility_Z = RigFractureTransmissibilityEquations::matrixToFractureTrans(
|
|
permZ, 1.0, Az, dz, m_fractureSkinFactor, fractureAreaWeightedlength, m_cDarcy);
|
|
|
|
transmissibility = sqrt(transmissibility_X * transmissibility_X + transmissibility_Y * transmissibility_Y +
|
|
transmissibility_Z * transmissibility_Z);
|
|
}
|
|
|
|
m_globalIndiciesToContributingEclipseCells.push_back(reservoirCellIndex);
|
|
m_contributingEclipseCellTransmissibilities.push_back(transmissibility);
|
|
m_contributingEclipseCellAreas.push_back(fractureArea);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::vector<size_t> RigEclipseToStimPlanCellTransmissibilityCalculator::getPotentiallyFracturedCellsForPolygon(
|
|
const std::vector<cvf::Vec3d>& polygon) const
|
|
{
|
|
std::vector<size_t> cellIndices;
|
|
|
|
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
|
|
if (!mainGrid) return cellIndices;
|
|
|
|
cvf::BoundingBox polygonBBox;
|
|
for (const cvf::Vec3d& nodeCoord : polygon)
|
|
{
|
|
polygonBBox.add(nodeCoord);
|
|
}
|
|
|
|
mainGrid->findIntersectingCells(polygonBBox, &cellIndices);
|
|
|
|
return cellIndices;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::ref<RigResultAccessor>
|
|
RigEclipseToStimPlanCellTransmissibilityCalculator::createResultAccessor(const RimEclipseCase* eclipseCase,
|
|
const QString& uiResultName)
|
|
{
|
|
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
|
|
const RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
|
|
|
|
// Create result accessor object for main grid at time step zero (static result date is always at first time step
|
|
return RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, uiResultName);
|
|
}
|