ResInsight/ApplicationLibCode/ReservoirDataModel/Completions/RigEclipseToStimPlanCalculator.cpp
Magne Sjaastad 8bab748fa6 Improve MSW export including multi lateral wells
Based on branch https://github.com/OPM/ResInsight/tree/system-msw-refactor

- Move completion settings to property of well path
- Rename to RimFishbones
- Export implicit COMPSEGS for fishbones main bore
- Add valve for each branch
- Increase version number to be able to handle import of legacy project files
2021-02-26 14:59:57 +01:00

270 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseToStimPlanCalculator.h"
#include "RiaLogging.h"
#include "RigActiveCellInfo.h"
#include "RigCaseCellResultsData.h"
#include "RigCellGeometryTools.h"
#include "RigEclipseCaseData.h"
#include "RigFractureCell.h"
#include "RigFractureGrid.h"
#include "RigFractureTransmissibilityEquations.h"
#include "RigHexIntersectionTools.h"
#include "RigMainGrid.h"
#include "RigResultAccessorFactory.h"
#include "RigTransmissibilityCondenser.h"
#include "RiaWeightedMeanCalculator.h"
#include "RimEclipseCase.h"
#include "RimEllipseFractureTemplate.h"
#include "RimFracture.h"
#include "RimFractureContainmentTools.h"
#include "RimStimPlanFractureTemplate.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseToStimPlanCalculator::RigEclipseToStimPlanCalculator( const RimEclipseCase* caseToApply,
cvf::Mat4d fractureTransform,
double skinFactor,
double cDarcy,
const RigFractureGrid& fractureGrid,
const RimFracture* fracture )
: m_case( caseToApply )
, m_fractureTransform( fractureTransform )
, m_fractureSkinFactor( skinFactor )
, m_cDarcy( cDarcy )
, m_fractureGrid( fractureGrid )
, m_fracture( fracture )
{
computeValues();
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseToStimPlanCalculator::computeValues()
{
auto reservoirCellIndicesOpenForFlow =
RimFractureContainmentTools::reservoirCellIndicesOpenForFlow( m_case, m_fracture );
for ( size_t i = 0; i < m_fractureGrid.fractureCells().size(); i++ )
{
const RigFractureCell& fractureCell = m_fractureGrid.fractureCells()[i];
if ( !fractureCell.hasNonZeroConductivity() ) continue;
RigEclipseToStimPlanCellTransmissibilityCalculator eclToFractureTransCalc( m_case,
m_fractureTransform,
m_fractureSkinFactor,
m_cDarcy,
fractureCell,
reservoirCellIndicesOpenForFlow,
m_fracture );
const std::vector<size_t>& fractureCellContributingEclipseCells =
eclToFractureTransCalc.globalIndiciesToContributingEclipseCells();
if ( !fractureCellContributingEclipseCells.empty() )
{
m_singleFractureCellCalculators.emplace( i, eclToFractureTransCalc );
}
}
}
using CellIdxSpace = RigTransmissibilityCondenser::CellAddress;
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseToStimPlanCalculator::appendDataToTransmissibilityCondenser( bool useFiniteConductivityInFracture,
RigTransmissibilityCondenser* condenser ) const
{
for ( const auto& eclToFractureTransCalc : m_singleFractureCellCalculators )
{
const std::vector<size_t>& fractureCellContributingEclipseCells =
eclToFractureTransCalc.second.globalIndiciesToContributingEclipseCells();
const std::vector<double>& fractureCellContributingEclipseCellTransmissibilities =
eclToFractureTransCalc.second.contributingEclipseCellTransmissibilities();
size_t stimPlanCellIndex = eclToFractureTransCalc.first;
for ( size_t i = 0; i < fractureCellContributingEclipseCells.size(); i++ )
{
if ( useFiniteConductivityInFracture )
{
condenser->addNeighborTransmissibility( { true,
CellIdxSpace::ECLIPSE,
fractureCellContributingEclipseCells[i] },
{ false, CellIdxSpace::STIMPLAN, stimPlanCellIndex },
fractureCellContributingEclipseCellTransmissibilities[i] );
}
else
{
condenser->addNeighborTransmissibility( { true,
CellIdxSpace::ECLIPSE,
fractureCellContributingEclipseCells[i] },
{ true, CellIdxSpace::WELL, 1 },
fractureCellContributingEclipseCellTransmissibilities[i] );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCalculator::totalEclipseAreaOpenForFlow() const
{
double area = 0.0;
for ( const auto& singleCellCalc : m_singleFractureCellCalculators )
{
double cellArea = singleCellCalc.second.areaOpenForFlow();
area += cellArea;
}
return area;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCalculator::areaWeightedMatrixPermeability() const
{
RiaWeightedMeanCalculator<double> calc;
{
for ( const auto& singleCellCalc : m_singleFractureCellCalculators )
{
const RigEclipseToStimPlanCellTransmissibilityCalculator& calulator = singleCellCalc.second;
const std::vector<double>& areas = calulator.contributingEclipseCellIntersectionAreas();
const std::vector<double>& permeabilities = calulator.contributingEclipseCellPermeabilities();
if ( areas.size() == permeabilities.size() )
{
for ( size_t i = 0; i < areas.size(); i++ )
{
calc.addValueAndWeight( permeabilities[i], areas[i] );
}
}
}
}
return calc.validAggregatedWeight() ? calc.weightedMean() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCalculator::areaWeightedWidth() const
{
double width = 0.0;
auto ellipseFractureTemplate = dynamic_cast<const RimEllipseFractureTemplate*>( m_fracture->fractureTemplate() );
if ( ellipseFractureTemplate )
{
width = ellipseFractureTemplate->width();
}
auto stimPlanFractureTemplate = dynamic_cast<const RimStimPlanFractureTemplate*>( m_fracture->fractureTemplate() );
if ( stimPlanFractureTemplate )
{
auto widthValues = stimPlanFractureTemplate->widthResultValues();
if ( !widthValues.empty() )
{
RiaWeightedMeanCalculator<double> calc;
for ( const auto& singleCellCalc : m_singleFractureCellCalculators )
{
double cellArea = singleCellCalc.second.areaOpenForFlow();
size_t globalStimPlanCellIndex = singleCellCalc.first;
double widthValue = widthValues[globalStimPlanCellIndex];
calc.addValueAndWeight( widthValue, cellArea );
}
width = calc.weightedMean();
}
else
{
width = stimPlanFractureTemplate->computeFractureWidth( m_fracture );
}
}
return width;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCalculator::areaWeightedConductivity() const
{
RiaWeightedMeanCalculator<double> calc;
for ( const auto& singleCellCalc : m_singleFractureCellCalculators )
{
double cellArea = singleCellCalc.second.areaOpenForFlow();
calc.addValueAndWeight( singleCellCalc.second.fractureCell().getConductivityValue(), cellArea );
}
return calc.validAggregatedWeight() ? calc.weightedMean() : 0.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCalculator::longestYSectionOpenForFlow() const
{
// For each I, find the longest aggregated distance along J with continuous fracture cells with conductivity above
// zero connected to Eclipse cells open for flow
double longestRange = 0.0;
for ( size_t i = 0; i < m_fractureGrid.iCellCount(); i++ )
{
double currentAggregatedDistanceY = 0.0;
for ( size_t j = 0; j < m_fractureGrid.jCellCount(); j++ )
{
size_t globalStimPlanCellIndex = m_fractureGrid.getGlobalIndexFromIJ( i, j );
auto calculatorForCell = m_singleFractureCellCalculators.find( globalStimPlanCellIndex );
if ( calculatorForCell != m_singleFractureCellCalculators.end() )
{
currentAggregatedDistanceY += calculatorForCell->second.fractureCell().cellSizeZ();
}
else
{
longestRange = std::max( longestRange, currentAggregatedDistanceY );
currentAggregatedDistanceY = 0.0;
}
}
longestRange = std::max( longestRange, currentAggregatedDistanceY );
}
return longestRange;
}