ResInsight/ApplicationLibCode/ReservoirDataModel/RigCellGeometryTools.cpp

843 lines
35 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigCellGeometryTools.h"
#include "cvfGeometryTools.h"
#include "cvfStructGrid.h"
#include "cafHexGridIntersectionTools/cafHexGridIntersectionTools.h"
#include "cvfBoundingBox.h"
#include "cvfMatrix3.h"
#include "clipper/clipper.hpp"
#include <algorithm>
#include <array>
#include <vector>
//--------------------------------------------------------------------------------------------------
/// Efficient Computation of Volume of Hexahedral Cells
/// Jeffrey Grandy, Lawrence Livermore National Laboratory
/// https://www.osti.gov/servlets/purl/632793/
///
/// Note that in the paper the following vertex numbering is used
/// 6---------7
/// /| /| |k
/// / | / | | /j
/// 4---------5 | |/
/// | 2------|--3 *---i
/// | / | /
/// |/ |/
/// 0---------1
///
/// While in ResInsight, this is the numbering. Thus we need to swap 2<->3, 6<->7 in the equations.
/// Note the negative k! This causes an additional set of 0<->4, 1<->5, etc. index swaps.
/// 7---------6
/// /| /| |-k
/// / | / | | /j
/// 4---------5 | |/
/// | 3------|--2 *---i
/// | / | /
/// |/ |/
/// 0---------1
//--------------------------------------------------------------------------------------------------
double RigCellGeometryTools::calculateCellVolume( const std::array<cvf::Vec3d, 8>& x )
{
// 6 * 3 flops = 18 flops
// Perform index swap when retrieving corners but keep indices in variable names matching paper.
cvf::Vec3d x3mx0 = x[6] - x[4]; // Swap 3->2, then negate z by 2->6 and 0->4
cvf::Vec3d x5mx0 = x[1] - x[4]; // Negate z by Swap 5->1 and 0->4
cvf::Vec3d x6mx0 = x[3] - x[4]; // Swap 6->7, then negate z by 7->3 and 0->4
cvf::Vec3d x7mx1 = x[2] - x[5]; // Swap 7->6, then negate z by 6->2 and 1->5
cvf::Vec3d x7mx2 = x[2] - x[7]; // Swap 7->6, 2->3, then negate z by 6->2 and 3->7
cvf::Vec3d x7mx4 = x[2] - x[0]; // Swap 7->6 then negate z by 6->2 and 4->0
// 3 flops for summation + 5 for dot product + 9 flops for cross product = 17 flops
double det1 = ( x7mx1 + x6mx0 ) * ( x7mx2 ^ x3mx0 );
// 3 flops for summation + 5 for dot product + 9 flops for cross product = 17 flops
double det2 = x6mx0 * ( ( x7mx2 + x5mx0 ) ^ x7mx4 );
// 3 flops for summation + 5 for dot product + 9 flops for cross product = 17 flops
double det3 = x7mx1 * ( x5mx0 ^ ( x7mx4 + x3mx0 ) );
// 2 flops for summation + 1 for division = 3 flops
double volume = ( det1 + det2 + det3 ) / 12.0;
// In order for this to work in any rotation of the cell, we need the absolute value. 1 flop.
return std::abs( volume ); // Altogether 18 + 3*17 + 3 + 1 flops = 73 flops.
}
//--------------------------------------------------------------------------------------------------
/// A reasonable approximation to the overlap volume
//--------------------------------------------------------------------------------------------------
bool RigCellGeometryTools::estimateHexOverlapWithBoundingBox( const std::array<cvf::Vec3d, 8>& hexCorners,
const cvf::BoundingBox& boundingBox,
std::array<cvf::Vec3d, 8>* overlapElement,
cvf::BoundingBox* overlapBoundingBox )
{
CVF_ASSERT( overlapElement && overlapBoundingBox );
*overlapBoundingBox = cvf::BoundingBox();
std::vector<cvf::Vec3d> uniqueTopPoints = { hexCorners[0], hexCorners[1], hexCorners[2], hexCorners[3] };
auto uniqueTopEnd = std::unique( uniqueTopPoints.begin(), uniqueTopPoints.end() );
if ( uniqueTopEnd - uniqueTopPoints.begin() < 3u ) return false;
cvf::Plane topPlane;
if ( !topPlane.setFromPoints( uniqueTopPoints[0], uniqueTopPoints[1], uniqueTopPoints[2] ) ) return false;
std::vector<cvf::Vec3d> uniqueBottomPoints = { hexCorners[4], hexCorners[5], hexCorners[6], hexCorners[7] };
auto uniqueBottomEnd = std::unique( uniqueBottomPoints.begin(), uniqueBottomPoints.end() );
if ( uniqueBottomEnd - uniqueBottomPoints.begin() < 3u ) return false;
cvf::Plane bottomPlane;
if ( !bottomPlane.setFromPoints( uniqueBottomPoints[0], uniqueBottomPoints[1], uniqueBottomPoints[2] ) )
return false;
const cvf::Vec3d& boundingMin = boundingBox.min();
const cvf::Vec3d& boundingMax = boundingBox.max();
for ( size_t i = 0; i < 4; ++i )
{
const cvf::Vec3d& hexCorner = hexCorners[i];
double x = std::clamp( hexCorner.x(), boundingMin.x(), boundingMax.x() );
double y = std::clamp( hexCorner.y(), boundingMin.y(), boundingMax.y() );
cvf::Vec3d corner;
cvf::Vec3d maxZCorner( x, y, boundingMax.z() );
cvf::Vec3d minZCorner( x, y, boundingMin.z() );
if ( topPlane.intersect( minZCorner, maxZCorner, &corner ) )
{
overlapBoundingBox->add( corner );
std::swap( ( *overlapElement )[i], corner );
}
else
{
double z = std::clamp( hexCorner.z(), boundingMin.z(), boundingMax.z() );
cvf::Vec3d clampedCorner( x, y, z );
overlapBoundingBox->add( clampedCorner );
( *overlapElement )[i] = clampedCorner;
}
}
for ( size_t i = 4; i < 8; ++i )
{
const cvf::Vec3d& hexCorner = hexCorners[i];
double x = std::clamp( hexCorner.x(), boundingMin.x(), boundingMax.x() );
double y = std::clamp( hexCorner.y(), boundingMin.y(), boundingMax.y() );
cvf::Vec3d corner;
cvf::Vec3d maxZCorner( x, y, boundingMax.z() );
cvf::Vec3d minZCorner( x, y, boundingMin.z() );
if ( bottomPlane.intersect( minZCorner, maxZCorner, &corner ) )
{
overlapBoundingBox->add( corner );
std::swap( ( *overlapElement )[i], corner );
}
else
{
double z = std::clamp( hexCorner.z(), boundingMin.z(), boundingMax.z() );
cvf::Vec3d clampedCorner( x, y, z );
overlapBoundingBox->add( clampedCorner );
( *overlapElement )[i] = clampedCorner;
}
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigCellGeometryTools::createPolygonFromLineSegments( std::list<std::pair<cvf::Vec3d, cvf::Vec3d>>& intersectionLineSegments,
std::vector<std::vector<cvf::Vec3d>>& polygons,
double tolerance )
{
bool startNewPolygon = true;
while ( !intersectionLineSegments.empty() )
{
if ( startNewPolygon )
{
std::vector<cvf::Vec3d> polygon;
// Add first line segments to polygon and remove from list
std::pair<cvf::Vec3d, cvf::Vec3d> linesegment = intersectionLineSegments.front();
polygon.push_back( linesegment.first );
polygon.push_back( linesegment.second );
intersectionLineSegments.remove( linesegment );
polygons.push_back( polygon );
startNewPolygon = false;
}
std::vector<cvf::Vec3d>& polygon = polygons.back();
// Search remaining list for next point...
bool isFound = false;
for ( std::list<std::pair<cvf::Vec3d, cvf::Vec3d>>::iterator lIt = intersectionLineSegments.begin();
lIt != intersectionLineSegments.end();
lIt++ )
{
cvf::Vec3d lineSegmentStart = lIt->first;
cvf::Vec3d lineSegmentEnd = lIt->second;
cvf::Vec3d polygonEnd = polygon.back();
double lineSegmentLength = ( lineSegmentStart - lineSegmentEnd ).lengthSquared();
if ( lineSegmentLength < tolerance * tolerance )
{
intersectionLineSegments.erase( lIt );
isFound = true;
break;
}
double lineSegmentStartDiff = ( lineSegmentStart - polygonEnd ).lengthSquared();
if ( lineSegmentStartDiff < tolerance * tolerance )
{
polygon.push_back( lIt->second );
intersectionLineSegments.erase( lIt );
isFound = true;
break;
}
double lineSegmentEndDiff = ( lineSegmentEnd - polygonEnd ).lengthSquared();
if ( lineSegmentEndDiff < tolerance * tolerance )
{
polygon.push_back( lIt->first );
intersectionLineSegments.erase( lIt );
isFound = true;
break;
}
}
if ( isFound )
{
continue;
}
else
{
startNewPolygon = true;
}
}
}
//--------------------------------------------------------------------------------------------------
/// Ramer-Douglas-Peucker simplification algorithm
///
/// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
//--------------------------------------------------------------------------------------------------
void RigCellGeometryTools::simplifyPolygon( std::vector<cvf::Vec3d>* vertices, double epsilon )
{
CVF_ASSERT( vertices );
if ( vertices->size() < 3 ) return;
std::pair<size_t, double> maxDistPoint( 0u, 0.0 );
for ( size_t i = 1; i < vertices->size() - 1; ++i )
{
cvf::Vec3d v = vertices->at( i );
double u;
cvf::Vec3d v_proj = cvf::GeometryTools::projectPointOnLine( vertices->front(), vertices->back(), v, &u );
double distance = ( v_proj - v ).length();
if ( distance > maxDistPoint.second )
{
maxDistPoint = std::make_pair( i, distance );
}
}
if ( maxDistPoint.second > epsilon )
{
std::vector<cvf::Vec3d> newVertices1( vertices->begin(), vertices->begin() + maxDistPoint.first + 1 );
std::vector<cvf::Vec3d> newVertices2( vertices->begin() + maxDistPoint.first, vertices->end() );
// Recurse
simplifyPolygon( &newVertices1, epsilon );
simplifyPolygon( &newVertices2, epsilon );
std::vector<cvf::Vec3d> newVertices( newVertices1.begin(), newVertices1.end() - 1 );
newVertices.insert( newVertices.end(), newVertices2.begin(), newVertices2.end() );
*vertices = newVertices;
}
else
{
std::vector<cvf::Vec3d> newVertices = { vertices->front(), vertices->back() };
*vertices = newVertices;
}
}
//==================================================================================================
///
//==================================================================================================
void RigCellGeometryTools::findCellLocalXYZ( const std::array<cvf::Vec3d, 8>& hexCorners,
cvf::Vec3d& localXdirection,
cvf::Vec3d& localYdirection,
cvf::Vec3d& localZdirection )
{
cvf::ubyte faceVertexIndices[4];
cvf::StructGridInterface::FaceEnum face;
face = cvf::StructGridInterface::NEG_I;
cvf::StructGridInterface::cellFaceVertexIndices( face, faceVertexIndices );
cvf::Vec3d faceCenterNegI = cvf::GeometryTools::computeFaceCenter( hexCorners[faceVertexIndices[0]],
hexCorners[faceVertexIndices[1]],
hexCorners[faceVertexIndices[2]],
hexCorners[faceVertexIndices[3]] );
// TODO: Should we use face centroids instead of face centers?
face = cvf::StructGridInterface::POS_I;
cvf::StructGridInterface::cellFaceVertexIndices( face, faceVertexIndices );
cvf::Vec3d faceCenterPosI = cvf::GeometryTools::computeFaceCenter( hexCorners[faceVertexIndices[0]],
hexCorners[faceVertexIndices[1]],
hexCorners[faceVertexIndices[2]],
hexCorners[faceVertexIndices[3]] );
face = cvf::StructGridInterface::NEG_J;
cvf::StructGridInterface::cellFaceVertexIndices( face, faceVertexIndices );
cvf::Vec3d faceCenterNegJ = cvf::GeometryTools::computeFaceCenter( hexCorners[faceVertexIndices[0]],
hexCorners[faceVertexIndices[1]],
hexCorners[faceVertexIndices[2]],
hexCorners[faceVertexIndices[3]] );
face = cvf::StructGridInterface::POS_J;
cvf::StructGridInterface::cellFaceVertexIndices( face, faceVertexIndices );
cvf::Vec3d faceCenterPosJ = cvf::GeometryTools::computeFaceCenter( hexCorners[faceVertexIndices[0]],
hexCorners[faceVertexIndices[1]],
hexCorners[faceVertexIndices[2]],
hexCorners[faceVertexIndices[3]] );
cvf::Vec3d faceCenterCenterVectorI = faceCenterPosI - faceCenterNegI;
cvf::Vec3d faceCenterCenterVectorJ = faceCenterPosJ - faceCenterNegJ;
localZdirection.cross( faceCenterCenterVectorI, faceCenterCenterVectorJ );
localZdirection.normalize();
cvf::Vec3d crossPoductJZ;
crossPoductJZ.cross( faceCenterCenterVectorJ, localZdirection );
localXdirection = faceCenterCenterVectorI + crossPoductJZ;
localXdirection.normalize();
cvf::Vec3d crossPoductIZ;
crossPoductIZ.cross( faceCenterCenterVectorI, localZdirection );
localYdirection = faceCenterCenterVectorJ - crossPoductIZ;
localYdirection.normalize();
// TODO: Check if we end up with 0-vectors, and handle this case...
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigCellGeometryTools::polygonLengthInLocalXdirWeightedByArea( const std::vector<cvf::Vec3d>& polygonToCalcLengthOf )
{
// Find bounding box
cvf::BoundingBox polygonBBox;
for ( cvf::Vec3d nodeCoord : polygonToCalcLengthOf )
polygonBBox.add( nodeCoord );
cvf::Vec3d bboxCorners[8];
polygonBBox.cornerVertices( bboxCorners );
// Split bounding box in multiple polygons (2D)
int resolutionOfLengthCalc = 20;
double widthOfPolygon = polygonBBox.extent().y() / resolutionOfLengthCalc;
std::vector<double> areasOfPolygonContributions;
std::vector<double> lengthOfPolygonContributions;
cvf::Vec3d directionOfLength( 1, 0, 0 );
for ( int i = 0; i < resolutionOfLengthCalc; i++ )
{
cvf::Vec3d pointOnLine1( bboxCorners[0].x(), bboxCorners[0].y() + i * widthOfPolygon, 0 );
cvf::Vec3d pointOnLine2( bboxCorners[0].x(), bboxCorners[0].y() + ( i + 1 ) * widthOfPolygon, 0 );
std::pair<cvf::Vec3d, cvf::Vec3d> line1 = getLineThroughBoundingBox( directionOfLength, polygonBBox, pointOnLine1 );
std::pair<cvf::Vec3d, cvf::Vec3d> line2 = getLineThroughBoundingBox( directionOfLength, polygonBBox, pointOnLine2 );
std::vector<cvf::Vec3d> polygon;
polygon.push_back( line1.first );
polygon.push_back( line1.second );
polygon.push_back( line2.second );
polygon.push_back( line2.first );
// Use clipper to find overlap between bbpolygon and fracture
std::vector<std::vector<cvf::Vec3d>> clippedPolygons = intersectionWithPolygon( polygonToCalcLengthOf, polygon );
double area = 0;
double length = 0;
cvf::Vec3d areaVector = cvf::Vec3d::ZERO;
// Calculate length (max-min) and area
for ( std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons )
{
areaVector = cvf::GeometryTools::polygonAreaNormal3D( clippedPolygon );
area += areaVector.length();
length += ( getLengthOfPolygonAlongLine( line1, clippedPolygon ) +
getLengthOfPolygonAlongLine( line2, clippedPolygon ) ) /
2;
}
areasOfPolygonContributions.push_back( area );
lengthOfPolygonContributions.push_back( length );
}
// Calculate area-weighted length average.
double totalArea = 0.0;
double totalAreaXlength = 0.0;
for ( size_t i = 0; i < areasOfPolygonContributions.size(); i++ )
{
totalArea += areasOfPolygonContributions[i];
totalAreaXlength += ( areasOfPolygonContributions[i] * lengthOfPolygonContributions[i] );
}
double areaWeightedLength = totalAreaXlength / totalArea;
return areaWeightedLength;
}
double clipperConversionFactor = 10000; // For transform to clipper int
ClipperLib::IntPoint toClipperPoint( const cvf::Vec3d& cvfPoint )
{
int xInt = cvfPoint.x() * clipperConversionFactor;
int yInt = cvfPoint.y() * clipperConversionFactor;
int zInt = cvfPoint.z() * clipperConversionFactor;
return ClipperLib::IntPoint( xInt, yInt, zInt );
}
cvf::Vec3d fromClipperPoint( const ClipperLib::IntPoint& clipPoint )
{
double zDValue;
if ( clipPoint.Z == std::numeric_limits<int>::max() )
{
zDValue = HUGE_VAL;
}
else
{
zDValue = clipPoint.Z;
}
return cvf::Vec3d( clipPoint.X, clipPoint.Y, zDValue ) / clipperConversionFactor;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<cvf::Vec3d>>
RigCellGeometryTools::intersectionWithPolygons( const std::vector<cvf::Vec3d>& polygon1,
const std::vector<std::vector<cvf::Vec3d>>& polygonToIntersectWith )
{
std::vector<std::vector<cvf::Vec3d>> clippedPolygons;
// Convert to int for clipper library and store as clipper "path"
ClipperLib::Clipper clpr;
{
ClipperLib::Path polygon1path;
for ( const cvf::Vec3d& v : polygon1 )
{
polygon1path.push_back( toClipperPoint( v ) );
}
clpr.AddPath( polygon1path, ClipperLib::ptSubject, true );
}
for ( const auto& path : polygonToIntersectWith )
{
ClipperLib::Path polygon2path;
for ( const auto& v : path )
{
polygon2path.push_back( toClipperPoint( v ) );
}
clpr.AddPath( polygon2path, ClipperLib::ptClip, true );
}
ClipperLib::Paths solution;
clpr.Execute( ClipperLib::ctIntersection, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd );
// Convert back to std::vector<std::vector<cvf::Vec3d> >
for ( ClipperLib::Path pathInSol : solution )
{
std::vector<cvf::Vec3d> clippedPolygon;
for ( ClipperLib::IntPoint IntPosition : pathInSol )
{
clippedPolygon.push_back( fromClipperPoint( IntPosition ) );
}
clippedPolygons.push_back( clippedPolygon );
}
return clippedPolygons;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<cvf::Vec3d>>
RigCellGeometryTools::intersectionWithPolygon( const std::vector<cvf::Vec3d>& polygon1,
const std::vector<cvf::Vec3d>& polygon2 )
{
return intersectionWithPolygons( polygon1, { polygon2 } );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<cvf::Vec3d>>
RigCellGeometryTools::subtractPolygons( const std::vector<cvf::Vec3d>& sourcePolygon,
const std::vector<std::vector<cvf::Vec3d>>& polygonsToSubtract )
{
ClipperLib::Clipper clpr;
{
// Convert to int for clipper library and store as clipper "path"
ClipperLib::Path polygon1path;
for ( const auto& v : sourcePolygon )
{
polygon1path.push_back( toClipperPoint( v ) );
}
clpr.AddPath( polygon1path, ClipperLib::ptSubject, true );
}
for ( const auto& path : polygonsToSubtract )
{
ClipperLib::Path polygon2path;
for ( const auto& v : path )
{
polygon2path.push_back( toClipperPoint( v ) );
}
clpr.AddPath( polygon2path, ClipperLib::ptClip, true );
}
ClipperLib::Paths solution;
clpr.Execute( ClipperLib::ctDifference, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd );
std::vector<std::vector<cvf::Vec3d>> clippedPolygons;
// Convert back to std::vector<std::vector<cvf::Vec3d> >
for ( ClipperLib::Path pathInSol : solution )
{
std::vector<cvf::Vec3d> clippedPolygon;
for ( ClipperLib::IntPoint IntPosition : pathInSol )
{
clippedPolygon.push_back( fromClipperPoint( IntPosition ) );
}
clippedPolygons.push_back( clippedPolygon );
}
return clippedPolygons;
}
std::vector<std::vector<cvf::Vec3d>> RigCellGeometryTools::subtractPolygon( const std::vector<cvf::Vec3d>& sourcePolygon,
const std::vector<cvf::Vec3d>& polygonToSubtract )
{
return subtractPolygons( sourcePolygon, { polygonToSubtract } );
}
//--------------------------------------------------------------------------------------------------
/// Note for cppcheck : First four parameter cannot be const to match the signature of the receiver
//--------------------------------------------------------------------------------------------------
void fillInterpolatedSubjectZ( ClipperLib::IntPoint& e1bot,
ClipperLib::IntPoint& e1top,
ClipperLib::IntPoint& e2bot,
ClipperLib::IntPoint& e2top,
ClipperLib::IntPoint& pt )
{
ClipperLib::IntPoint ePLbot;
ClipperLib::IntPoint ePLtop;
if ( e1top.Z == std::numeric_limits<int>::max() )
{
ePLtop = e2top;
ePLbot = e2bot;
}
else
{
ePLtop = e1top;
ePLbot = e1bot;
}
double ePLXRange = ( ePLtop.X - ePLbot.X );
double ePLYRange = ( ePLtop.Y - ePLbot.Y );
double ePLLength = sqrt( ePLXRange * ePLXRange + ePLYRange * ePLYRange );
if ( ePLLength <= 1 )
{
pt.Z = ePLbot.Z;
return;
}
double ePLBotPtXRange = pt.X - ePLbot.X;
double ePLBotPtYRange = pt.Y - ePLbot.Y;
double ePLBotPtLength = sqrt( ePLBotPtXRange * ePLBotPtXRange + ePLBotPtYRange * ePLBotPtYRange );
double fraction = ePLBotPtLength / ePLLength;
pt.Z = std::nearbyint( ePLbot.Z + fraction * ( ePLtop.Z - ePLbot.Z ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void fillUndefinedZ( ClipperLib::IntPoint& e1bot,
ClipperLib::IntPoint& e1top,
ClipperLib::IntPoint& e2bot,
ClipperLib::IntPoint& e2top,
ClipperLib::IntPoint& pt )
{
pt.Z = std::numeric_limits<int>::max();
}
//--------------------------------------------------------------------------------------------------
/// Assumes x.y plane polygon. Polyline might have a Z, and the returned Z is the polyline Z, interpolated if it is
/// clipped.
//--------------------------------------------------------------------------------------------------
std::vector<std::vector<cvf::Vec3d>> RigCellGeometryTools::clipPolylineByPolygon( const std::vector<cvf::Vec3d>& polyLine,
const std::vector<cvf::Vec3d>& polygon,
ZInterpolationType interpolType )
{
std::vector<std::vector<cvf::Vec3d>> clippedPolyline;
// Adjusting polygon to avoid clipper issue with interpolating z-values when lines crosses though polygon vertecies
std::vector<cvf::Vec3d> adjustedPolygon = ajustPolygonToAvoidIntersectionsAtVertex( polyLine, polygon );
// Convert to int for clipper library and store as clipper "path"
ClipperLib::Path polyLinePath;
for ( const cvf::Vec3d& v : polyLine )
{
polyLinePath.push_back( toClipperPoint( v ) );
}
ClipperLib::Path polygonPath;
for ( const cvf::Vec3d& v : adjustedPolygon )
{
ClipperLib::IntPoint intp = toClipperPoint( v );
intp.Z = std::numeric_limits<int>::max();
polygonPath.push_back( intp );
}
ClipperLib::Clipper clpr;
clpr.AddPath( polyLinePath, ClipperLib::ptSubject, false );
clpr.AddPath( polygonPath, ClipperLib::ptClip, true );
if ( interpolType == INTERPOLATE_LINE_Z )
{
clpr.ZFillFunction( &fillInterpolatedSubjectZ );
}
else if ( interpolType == USE_HUGEVAL )
{
clpr.ZFillFunction( &fillUndefinedZ );
}
ClipperLib::PolyTree solution;
clpr.Execute( ClipperLib::ctIntersection, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd );
// We only expect open paths from this method (unless the polyline is self intersecting, a condition we do not handle)
ClipperLib::Paths solutionPaths;
ClipperLib::OpenPathsFromPolyTree( solution, solutionPaths );
// Convert back to std::vector<std::vector<cvf::Vec3d> >
for ( ClipperLib::Path pathInSol : solutionPaths )
{
std::vector<cvf::Vec3d> clippedPolygon;
for ( ClipperLib::IntPoint IntPosition : pathInSol )
{
clippedPolygon.push_back( fromClipperPoint( IntPosition ) );
}
clippedPolyline.push_back( clippedPolygon );
}
return clippedPolyline;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<cvf::Vec3d, cvf::Vec3d> RigCellGeometryTools::getLineThroughBoundingBox( const cvf::Vec3d& lineDirection,
const cvf::BoundingBox& polygonBBox,
const cvf::Vec3d& pointOnLine )
{
cvf::Vec3d bboxCorners[8];
polygonBBox.cornerVertices( bboxCorners );
cvf::Vec3d startPoint = pointOnLine;
cvf::Vec3d endPoint = pointOnLine;
cvf::Vec3d lineDir = lineDirection;
// To avoid doing many iterations in loops below linedirection should be quite large.
lineDir.normalize();
lineDir = lineDir * polygonBBox.extent().length() / 5;
// Extend line in positive direction
while ( polygonBBox.contains( startPoint ) )
{
startPoint = startPoint + lineDir;
}
// Extend line in negative direction
while ( polygonBBox.contains( endPoint ) )
{
endPoint = endPoint - lineDir;
}
std::pair<cvf::Vec3d, cvf::Vec3d> line;
line = { startPoint, endPoint };
return line;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigCellGeometryTools::getLengthOfPolygonAlongLine( const std::pair<cvf::Vec3d, cvf::Vec3d>& line,
const std::vector<cvf::Vec3d>& polygon )
{
cvf::BoundingBox lineBoundingBox;
for ( cvf::Vec3d polygonPoint : polygon )
{
cvf::Vec3d pointOnLine = cvf::GeometryTools::projectPointOnLine( line.first, line.second, polygonPoint, nullptr );
lineBoundingBox.add( pointOnLine );
}
double length = lineBoundingBox.extent().length();
return length;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigCellGeometryTools::unionOfPolygons( const std::vector<std::vector<cvf::Vec3d>>& polygons )
{
// Convert to int for clipper library and store as clipper "path"
std::vector<ClipperLib::Path> polygonPaths;
for ( const std::vector<cvf::Vec3d>& polygon : polygons )
{
polygonPaths.emplace_back();
auto& p = polygonPaths.back();
for ( const cvf::Vec3d& pp : polygon )
{
p.push_back( toClipperPoint( pp ) );
}
}
ClipperLib::Clipper clpr;
clpr.AddPaths( polygonPaths, ClipperLib::ptSubject, true );
ClipperLib::Paths solution;
clpr.Execute( ClipperLib::ctUnion, solution, ClipperLib::pftEvenOdd, ClipperLib::pftEvenOdd );
// Convert back to std::vector<std::vector<cvf::Vec3d> >
std::vector<cvf::Vec3d> unionPolygon;
for ( ClipperLib::Path pathInSol : solution )
{
for ( ClipperLib::IntPoint IntPosition : pathInSol )
{
unionPolygon.push_back( fromClipperPoint( IntPosition ) );
}
}
return unionPolygon;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d>
RigCellGeometryTools::ajustPolygonToAvoidIntersectionsAtVertex( const std::vector<cvf::Vec3d>& polyLine,
const std::vector<cvf::Vec3d>& polygon )
{
std::vector<cvf::Vec3d> adjustedPolygon;
double treshold = ( 1.0 / 10000.0 ) * 5; // 5 times polygonScaleFactor for converting to int for clipper
for ( cvf::Vec3d polygonPoint : polygon )
{
for ( size_t i = 0; i < polyLine.size() - 1; i++ )
{
cvf::Vec3d linePoint1( polyLine[i].x(), polyLine[i].y(), 0.0 );
cvf::Vec3d linePoint2( polyLine[i + 1].x(), polyLine[i + 1].y(), 0.0 );
double pointDistanceFromLine = cvf::GeometryTools::linePointSquareDist( linePoint1, linePoint2, polygonPoint );
if ( pointDistanceFromLine < treshold )
{
// calculate new polygonPoint
cvf::Vec3d directionOfLineSegment = linePoint2 - linePoint1;
// finding normal to the direction of the line segment in the XY plane (z=0)
cvf::Vec3d normalToLine( -directionOfLineSegment.y(), directionOfLineSegment.x(), 0.0 );
normalToLine.normalize();
polygonPoint = polygonPoint + normalToLine * 0.005;
}
}
adjustedPolygon.push_back( polygonPoint );
}
return adjustedPolygon;
}
//--------------------------------------------------------------------------------------------------
/// tests if a point is Left|On|Right of an infinite line.
/// Input: three points P1, P2, and P3
/// Return: >0 for P3 left of the line through P1 and P2
/// =0 for P3 on the line
/// <0 for P3 right of the line
/// ref. http://geomalgorithms.com/a01-_area.html
//--------------------------------------------------------------------------------------------------
inline double
RigCellGeometryTools::isLeftOfLine2D( const cvf::Vec3d& point1, const cvf::Vec3d& point2, const cvf::Vec3d& point3 )
{
return ( ( point2.x() - point1.x() ) * ( point3.y() - point1.y() ) -
( point3.x() - point1.x() ) * ( point2.y() - point1.y() ) );
}
//--------------------------------------------------------------------------------------------------
/// winding number test for a point in a polygon
/// Input: point = the point to test,
/// polygon[] = vertex points of a closed polygon of size n, where polygon[n-1]=polygon[0]
///
/// Return: true if inside, false if outside)
/// ref. http://geomalgorithms.com/a03-_inclusion.html
//--------------------------------------------------------------------------------------------------
bool RigCellGeometryTools::pointInsidePolygon2D( const cvf::Vec3d point, const std::vector<cvf::Vec3d>& polygon )
{
// Copyright 2000 softSurfer, 2012 Dan Sunday
// This code may be freely used and modified for any purpose
// providing that this copyright notice is included with it.
// SoftSurfer makes no warranty for this code, and cannot be held
// liable for any real or imagined damage resulting from its use.
// Users of this code must verify correctness for their application
int wn = 0; // the winding number counter
size_t N = polygon.size() - 1;
// loop through all edges of the polygon
for ( size_t i = 0; i < N; i++ )
{ // edge from V[i] to V[i+1]
if ( polygon[i].y() <= point.y() )
{ // start y <= P.y
if ( polygon[i + 1].y() > point.y() ) // an upward crossing
if ( isLeftOfLine2D( polygon[i], polygon[i + 1], point ) > 0 ) // P left of edge
++wn; // have a valid up intersect
}
else
{ // start y > P.y
if ( polygon[i + 1].y() <= point.y() ) // a downward crossing
if ( isLeftOfLine2D( polygon[i], polygon[i + 1], point ) < 0 ) // P right of edge
--wn; // have a valid down intersect
}
}
return wn != 0;
}