ResInsight/ApplicationLibCode/ReservoirDataModel/RigSimulationWellCenterLineCalculator.cpp
2021-05-26 13:28:45 +02:00

1105 lines
50 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigSimulationWellCenterLineCalculator.h"
#include "RigCell.h"
#include "RigCellFaceGeometryTools.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigSimWellData.h"
#include "RigWellResultPoint.h"
#include "RimEclipseCase.h"
#include "RimEclipseView.h"
#include "RimSimWellInView.h"
#include "RimSimWellInViewCollection.h"
#include "cvfBoundingBoxTree.h"
#include "cvfGeometryTools.h"
#include "cvfRay.h"
#include <deque>
#include <list>
//--------------------------------------------------------------------------------------------------
/// Based on the points and cells, calculate a pipe centerline
/// The returned CellIds is one less than the number of centerline points,
/// and are describing the lines between the points, starting with the first line
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::calculateWellPipeStaticCenterline(
RimSimWellInView* rimWell,
std::vector<std::vector<cvf::Vec3d>>& pipeBranchesCLCoords,
std::vector<std::vector<RigWellResultPoint>>& pipeBranchesCellIds )
{
CVF_ASSERT( rimWell );
const RigSimWellData* simWellData = rimWell->simWellData();
RimEclipseView* eclipseView;
rimWell->firstAncestorOrThisOfType( eclipseView );
CVF_ASSERT( eclipseView );
RigEclipseCaseData* eclipseCaseData = eclipseView->eclipseCase()->eclipseCaseData();
bool isAutoDetectBranches = eclipseView->wellCollection()->isAutoDetectingBranches();
bool useAllCellCenters = rimWell->isUsingCellCenterForPipe();
int timeStepIndex = -1;
calculateWellPipeCenterlineFromWellFrame( eclipseCaseData,
simWellData,
timeStepIndex,
isAutoDetectBranches,
useAllCellCenters,
pipeBranchesCLCoords,
pipeBranchesCellIds );
}
//--------------------------------------------------------------------------------------------------
/// Based on the points and cells, calculate a pipe centerline
/// The returned CellIds is one less than the number of centerline points,
/// and are describing the lines between the points, starting with the first line
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::calculateWellPipeCenterlineFromWellFrame(
const RigEclipseCaseData* eclipseCaseData,
const RigSimWellData* wellResults,
int timeStepIndex,
bool isAutoDetectBranches,
bool useAllCellCenters,
std::vector<std::vector<cvf::Vec3d>>& pipeBranchesCLCoords,
std::vector<std::vector<RigWellResultPoint>>& pipeBranchesCellIds )
{
// Initialize the return arrays
pipeBranchesCLCoords.clear();
pipeBranchesCellIds.clear();
if ( !wellResults ) return;
if ( timeStepIndex >= 0 && !wellResults->hasAnyValidCells( timeStepIndex ) ) return;
const RigWellResultFrame* wellFramePtr = nullptr;
if ( timeStepIndex < 0 )
{
wellFramePtr = wellResults->staticWellCells();
}
else
{
wellFramePtr = wellResults->wellResultFrame( timeStepIndex );
}
bool isMultiSegmentWell = wellResults->isMultiSegmentWell();
#if 0 // Fancy branch splitting, but with artifacts. Needs a bit more work to be better overall than the one we have.
RigWellResultFrame splittedWellFrame;
if (!isMultiSegmentWell && isAutoDetectBranches)
{
splittedWellFrame = splitIntoBranches(*wellFramePtr, eclipseCaseData);
wellFramePtr = &splittedWellFrame;
isMultiSegmentWell = true;
}
#endif
const RigWellResultFrame& wellFrame = *wellFramePtr;
const std::vector<RigWellResultBranch>& resBranches = wellFrame.m_wellResultBranches;
// Well head
// Match this position with well head position in RivWellHeadPartMgr::buildWellHeadParts()
const RigCell& whCell = eclipseCaseData->cellFromWellResultCell( wellFrame.wellHeadOrStartCell() );
cvf::Vec3d whStartPos = whCell.faceCenter( cvf::StructGridInterface::NEG_K );
RigWellResultPoint wellHead = wellFrame.wellHeadOrStartCell();
const RigWellResultPoint* whResCell = &wellHead;
// Add extra coordinate between cell face and cell center
// to make sure the well pipe terminated in a segment parallel to z-axis
cvf::Vec3d whIntermediate = whStartPos;
whIntermediate.z() = ( whStartPos.z() + whCell.center().z() ) / 2.0;
const RigWellResultPoint* prevWellResPoint = nullptr;
// CVF_ASSERT(isMultiSegmentWell || resBranches.size() <= 1); // TODO : Consider to set isMultiSegmentWell = true;
// The centerline is calculated by adding a point when the pipe enters a cell,
// and one when the line leaves the cell.
// For the sake of the loop:
// The currentResultPoint (Cell) and the one we index by the loop variable is the one we calculate the entry point
// to. The previous cell is the one we leave, and calculate the "out-point" from
for ( size_t brIdx = 0; brIdx < resBranches.size(); brIdx++ )
{
// Skip empty branches. Do not know why they exist, but they make problems.
const RigWellResultBranch& branch = resBranches[brIdx];
if ( !hasAnyValidDataCells( branch ) ) continue;
prevWellResPoint = nullptr;
// Find the start the MSW well-branch centerline. Normal wells are started "once" at wellhead in the code above
pipeBranchesCLCoords.push_back( std::vector<cvf::Vec3d>() );
pipeBranchesCellIds.push_back( std::vector<RigWellResultPoint>() );
if ( brIdx == 0 )
{
// The first branch contains segment number 1, and this is the only segment connected to well head
// See Eclipse documentation for the keyword WELSEGS
prevWellResPoint = whResCell;
pipeBranchesCLCoords.back().push_back( whStartPos );
pipeBranchesCellIds.back().push_back( *prevWellResPoint );
pipeBranchesCLCoords.back().push_back( whIntermediate );
pipeBranchesCellIds.back().push_back( *prevWellResPoint );
}
// Loop over all the resultPoints in the branch
const std::vector<RigWellResultPoint>& resBranchCells = resBranches[brIdx].m_branchResultPoints;
for ( int cIdx = 0; cIdx < static_cast<int>( resBranchCells.size() ); cIdx++ ) // Need int because cIdx can
// temporarily end on
// cvf::UNDEFINED_SIZE_T
{
std::vector<cvf::Vec3d>& branchCLCoords = pipeBranchesCLCoords.back();
std::vector<RigWellResultPoint>& branchCellIds = pipeBranchesCellIds.back();
const RigWellResultPoint& currentWellResPoint = resBranchCells[cIdx];
// Ignore invalid cells
if ( !currentWellResPoint.isValid() )
{
// CVF_ASSERT(false); // Some segments does not get anything yet.
continue;
}
// Add cl contribution for a geometrical resultPoint by adding exit point from previous cell,
// and then the result point position
if ( !currentWellResPoint.isCell() )
{
// Use the interpolated value of branch head
CVF_ASSERT( currentWellResPoint.isPointValid() );
cvf::Vec3d currentPoint = currentWellResPoint.m_bottomPosition;
// If we have a real previous cell, we need to go out of it, before adding the current point
// That is: add a CL-point describing where it leaves the previous cell.
if ( prevWellResPoint && prevWellResPoint->isCell() )
{
// Create ray between the previous and this position
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell( *prevWellResPoint );
cvf::Vec3d centerPreviousCell = prevCell.center();
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin( centerPreviousCell );
rayToThisCell.setDirection( ( currentPoint - centerPreviousCell ).getNormalized() );
cvf::Vec3d outOfPrevCell( centerPreviousCell );
prevCell.firstIntersectionPoint( rayToThisCell, &outOfPrevCell );
if ( ( currentPoint - outOfPrevCell ).lengthSquared() > 1e-3 )
{
branchCLCoords.push_back( outOfPrevCell );
branchCellIds.push_back( RigWellResultPoint() );
}
}
branchCLCoords.push_back( currentPoint );
branchCellIds.push_back( currentWellResPoint );
prevWellResPoint = &currentWellResPoint;
continue;
}
//
// Handle currentWellResPoint as a real cell result points.
//
const RigCell& cell = eclipseCaseData->cellFromWellResultCell( currentWellResPoint );
// Check if this and the previous cells has shared faces
cvf::StructGridInterface::FaceType sharedFace;
if ( prevWellResPoint && prevWellResPoint->isCell() &&
eclipseCaseData->findSharedSourceFace( sharedFace, currentWellResPoint, *prevWellResPoint ) )
{
// If they share faces, the shared face center is used as point
// describing the entry of this cell. (And exit of the previous cell)
branchCLCoords.push_back( cell.faceCenter( sharedFace ) );
branchCellIds.push_back( currentWellResPoint );
}
else
{
// This and the previous cell does not share a face.
// Then we need to calculate the exit of the previous cell, and the entry point into this cell
cvf::Vec3d centerPreviousCell( cvf::Vec3d::ZERO );
cvf::Vec3d centerThisCell = cell.center();
bool distanceToWellHeadIsLonger = true;
// If we have a previous well result point, use its center as measure point and ray intersection start
// when considering things.
if ( prevWellResPoint && prevWellResPoint->isValid() )
{
if ( prevWellResPoint->isCell() )
{
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell( *prevWellResPoint );
centerPreviousCell = prevCell.center();
}
else
{
centerPreviousCell = prevWellResPoint->m_bottomPosition;
}
distanceToWellHeadIsLonger = ( centerThisCell - centerPreviousCell ).lengthSquared() <=
( centerThisCell - whStartPos ).lengthSquared();
}
// First make sure this cell is not starting a new "display" branch for none MSW's
if ( isMultiSegmentWell || !isAutoDetectBranches || ( prevWellResPoint == whResCell ) ||
distanceToWellHeadIsLonger )
{
// Not starting a "display" branch for normal wells
// Calculate the exit of the previous cell, and the entry point into this cell
cvf::Vec3d intoThisCell( centerThisCell ); // Use cell center as default for "into" point.
if ( prevWellResPoint && prevWellResPoint->isValid() )
{
// We have a defined previous point
// Create ray between the previous and this cell
cvf::Ray rayToThisCell;
rayToThisCell.setOrigin( centerPreviousCell );
rayToThisCell.setDirection( ( centerThisCell - centerPreviousCell ).getNormalized() );
// Intersect with the current cell to find a better entry point than the cell center
int intersectionCount = cell.firstIntersectionPoint( rayToThisCell, &intoThisCell );
bool isPreviousResPointInsideCurrentCell = ( intersectionCount % 2 ); // Must intersect uneven
// times to be inside. (1
// % 2 = 1)
// If we have a real previous cell, we need to go out of it, before entering this.
// That is: add a CL-point describing where it leaves the previous cell.
if ( prevWellResPoint->isCell() )
{
cvf::Vec3d outOfPrevCell( centerPreviousCell );
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell( *prevWellResPoint );
prevCell.firstIntersectionPoint( rayToThisCell, &outOfPrevCell );
if ( ( intoThisCell - outOfPrevCell ).lengthSquared() > 1e-3 )
{
branchCLCoords.push_back( outOfPrevCell );
branchCellIds.push_back( RigWellResultPoint() );
}
}
else if ( isPreviousResPointInsideCurrentCell )
{
// Since the previous point actually is inside this cell,
/// use that as the entry point into this cell
intoThisCell = centerPreviousCell;
}
}
branchCLCoords.push_back( intoThisCell );
branchCellIds.push_back( currentWellResPoint );
}
else
{
// Need to start a "display branch" for a Normal Well.
CVF_ASSERT( !isMultiSegmentWell );
// This cell is further from the previous cell than from the well head,
// thus we interpret it as a new branch.
// First finish the current branch in the previous cell
// branchCLCoords.push_back(branchCLCoords.back() + 1.5*(centerPreviousCell - branchCLCoords.back()) );
finishPipeCenterLine( pipeBranchesCLCoords, centerPreviousCell );
// Create new display branch
pipeBranchesCLCoords.push_back( std::vector<cvf::Vec3d>() );
pipeBranchesCellIds.push_back( std::vector<RigWellResultPoint>() );
// Start the new branch by entering the first cell (the wellhead) and intermediate
prevWellResPoint = whResCell;
pipeBranchesCLCoords.back().push_back( whStartPos );
pipeBranchesCellIds.back().push_back( *prevWellResPoint );
// Include intermediate
pipeBranchesCLCoords.back().push_back( whIntermediate );
pipeBranchesCellIds.back().push_back( *prevWellResPoint );
// Well now we need to step one back to take this cell again, but in the new branch.
cIdx--;
continue;
}
}
prevWellResPoint = &currentWellResPoint;
}
// For the last cell, add the point 0.5 past the center of that cell
// Remember that prevWellResPoint actually is the last one in this branch.
if ( prevWellResPoint && prevWellResPoint->isCell() )
{
const RigCell& prevCell = eclipseCaseData->cellFromWellResultCell( *prevWellResPoint );
cvf::Vec3d centerLastCell = prevCell.center();
finishPipeCenterLine( pipeBranchesCLCoords, centerLastCell );
}
else if ( prevWellResPoint && prevWellResPoint->isPointValid() )
{
// Continue the line with the same point, just to keep the last Cell ID
pipeBranchesCLCoords.back().push_back( prevWellResPoint->m_bottomPosition );
}
else
{
// Remove the ID that is superfluous since we will not add an ending point
pipeBranchesCellIds.back().pop_back();
}
}
if ( useAllCellCenters ) addCellCenterPoints( eclipseCaseData, pipeBranchesCLCoords, pipeBranchesCellIds );
CVF_ASSERT( pipeBranchesCellIds.size() == pipeBranchesCLCoords.size() );
for ( size_t i = 0; i < pipeBranchesCellIds.size(); ++i )
{
CVF_ASSERT( pipeBranchesCellIds[i].size() == pipeBranchesCLCoords[i].size() - 1 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::addCellCenterPoints( const RigEclipseCaseData* eclipseCaseData,
std::vector<std::vector<cvf::Vec3d>>& pipeBranchesCLCoords,
std::vector<std::vector<RigWellResultPoint>>& pipeBranchesCellIds )
{
for ( size_t brIdx = 0; brIdx < pipeBranchesCellIds.size(); brIdx++ )
{
const std::vector<RigWellResultPoint>& branchResPoints = pipeBranchesCellIds[brIdx];
const std::vector<cvf::Vec3d>& branchClPoints = pipeBranchesCLCoords[brIdx];
std::vector<RigWellResultPoint> branchResPointsWithCellCenters;
std::vector<cvf::Vec3d> branchClPointsWithCellCenters;
for ( size_t cIdx = 0; cIdx < branchResPoints.size(); cIdx++ )
{
branchResPointsWithCellCenters.push_back( branchResPoints[cIdx] );
branchClPointsWithCellCenters.push_back( branchClPoints[cIdx] );
if ( branchResPoints[cIdx].isCell() )
{
const RigCell& cell = eclipseCaseData->cellFromWellResultCell( branchResPoints[cIdx] );
cvf::Vec3d center = cell.center();
branchClPointsWithCellCenters.push_back( center );
branchResPointsWithCellCenters.push_back( branchResPoints[cIdx] );
}
}
branchClPointsWithCellCenters.push_back( branchClPoints[branchResPoints.size()] );
pipeBranchesCellIds[brIdx] = branchResPointsWithCellCenters;
pipeBranchesCLCoords[brIdx] = branchClPointsWithCellCenters;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimulationWellCenterLineCalculator::hasAnyValidDataCells( const RigWellResultBranch& branch )
{
bool hasValidData = false;
for ( size_t cIdx = 0; cIdx < branch.m_branchResultPoints.size(); ++cIdx )
{
if ( branch.m_branchResultPoints[cIdx].isValid() )
{
hasValidData = true;
break;
}
}
return hasValidData;
}
//--------------------------------------------------------------------------------------------------
/// All branches are completed using the point 0.5 past the center of
/// last cell.
//--------------------------------------------------------------------------------------------------
void RigSimulationWellCenterLineCalculator::finishPipeCenterLine( std::vector<std::vector<cvf::Vec3d>>& pipeBranchesCLCoords,
const cvf::Vec3d& lastCellCenter )
{
CVF_ASSERT( pipeBranchesCLCoords.size() );
CVF_ASSERT( pipeBranchesCLCoords.back().size() );
cvf::Vec3d entryPointLastCell = pipeBranchesCLCoords.back().back();
pipeBranchesCLCoords.back().push_back( entryPointLastCell + 1.5 * ( lastCellCenter - entryPointLastCell ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
class BranchSplitter
{
public:
BranchSplitter( const RigWellResultFrame& awellResultFrame, const RigEclipseCaseData* eclipseCaseData )
: m_eclipseCaseData( eclipseCaseData )
, m_orgWellResultFrame( awellResultFrame )
{
CVF_ASSERT( m_orgWellResultFrame.m_wellResultBranches.size() <= 1 );
m_branchedWell = m_orgWellResultFrame;
buildCellSearchTree();
buildCellsToNeighborsMap();
buildUnusedCellsSet();
buildBranchLinesOfContinousNeighbourCells();
class DistToEndPoint
{
public:
DistToEndPoint( double adist,
std::list<std::pair<bool, std::deque<size_t>>>::iterator aBranchLineIt,
bool aToFrontOfBranchLine2 )
: dist( adist )
, branchLineIt( aBranchLineIt )
, toFrontOfBranchLine( aToFrontOfBranchLine2 )
{
}
double dist;
std::list<std::pair<bool, std::deque<size_t>>>::iterator branchLineIt;
bool toFrontOfBranchLine;
bool operator<( const DistToEndPoint& other ) const { return dist < other.dist; }
};
auto cmp = []( std::list<std::pair<bool, std::deque<size_t>>>::iterator a,
std::list<std::pair<bool, std::deque<size_t>>>::iterator b ) { return &( *a ) < &( *b ); };
std::set<std::list<std::pair<bool, std::deque<size_t>>>::iterator, decltype( cmp )> unusedBranchLineIterators( cmp );
std::map<int, std::multiset<DistToEndPoint>> resBranchIdxToBranchLineEndPointsDists;
/// Creating useful lambda functions
auto buildResBranchToBranchLineEndsDistMap = [&unusedBranchLineIterators,
&resBranchIdxToBranchLineEndPointsDists,
this]( const cvf::Vec3d& fromPoint, int resultBranchIndex ) {
for ( auto it : unusedBranchLineIterators )
{
{
double dist = calculateFrontToPointDistance( it->second, fromPoint );
resBranchIdxToBranchLineEndPointsDists[resultBranchIndex].insert( DistToEndPoint( dist, it, true ) );
}
{
double dist = calculateEndToPointDistance( it->second, fromPoint );
resBranchIdxToBranchLineEndPointsDists[resultBranchIndex].insert( DistToEndPoint( dist, it, false ) );
}
}
};
auto removeBranchLineFromDistanceMap =
[&resBranchIdxToBranchLineEndPointsDists](
std::list<std::pair<bool, std::deque<size_t>>>::iterator branchLineToMergeIt ) {
for ( auto& brIdx_DistToEndPointSet : resBranchIdxToBranchLineEndPointsDists )
{
std::vector<std::multiset<DistToEndPoint>::iterator> iteratorsToErase;
for ( auto it = brIdx_DistToEndPointSet.second.begin(); it != brIdx_DistToEndPointSet.second.end();
++it )
{
if ( it->branchLineIt == branchLineToMergeIt )
{
iteratorsToErase.push_back( it );
}
}
for ( auto itToErase : iteratorsToErase )
brIdx_DistToEndPointSet.second.erase( itToErase );
}
};
// Make the result container ready
m_branchedWell.m_wellResultBranches.clear();
m_branchedWell.m_wellResultBranches.push_back( RigWellResultBranch() );
// Build set of unused branch lines
for ( auto brLIt = m_branchLines.begin(); brLIt != m_branchLines.end(); ++brLIt )
{
if ( brLIt->first ) unusedBranchLineIterators.insert( brLIt );
}
// Calculate wellhead to branch line ends distances
{
const RigCell& whCell = m_eclipseCaseData->cellFromWellResultCell( m_orgWellResultFrame.wellHeadOrStartCell() );
cvf::Vec3d whStartPos = whCell.faceCenter( cvf::StructGridInterface::NEG_K );
buildResBranchToBranchLineEndsDistMap( whStartPos, -1 );
}
// Add the branchLine closest to wellhead into the result
{
auto closestEndPointIt = resBranchIdxToBranchLineEndPointsDists[-1].begin();
addBranchLineToLastWellResultBranch( closestEndPointIt->branchLineIt, closestEndPointIt->toFrontOfBranchLine );
unusedBranchLineIterators.erase( closestEndPointIt->branchLineIt );
removeBranchLineFromDistanceMap( closestEndPointIt->branchLineIt );
}
// Add the branchLines that starts directly from another branchLine
{
for ( auto brLIt = m_branchLines.begin(); brLIt != m_branchLines.end(); ++brLIt )
{
if ( !brLIt->first )
{
m_branchedWell.m_wellResultBranches.push_back( RigWellResultBranch() );
addBranchLineToLastWellResultBranch( brLIt, true );
}
}
}
while ( !unusedBranchLineIterators.empty() )
{
// Calculate distance from end of all currently added result branches to all branch lines
for ( size_t resultBranchIndex = 0; resultBranchIndex < m_branchedWell.m_wellResultBranches.size();
++resultBranchIndex )
{
if ( !resBranchIdxToBranchLineEndPointsDists.count( (int)resultBranchIndex ) &&
m_branchedWell.m_wellResultBranches[resultBranchIndex].m_branchResultPoints.size() &&
m_branchedWell.m_wellResultBranches[resultBranchIndex].m_branchResultPoints.back().isCell() )
{
const RigCell& whCell = eclipseCaseData->cellFromWellResultCell(
m_branchedWell.m_wellResultBranches[resultBranchIndex].m_branchResultPoints.back() );
cvf::Vec3d branchEndPoint = whCell.center();
buildResBranchToBranchLineEndsDistMap( branchEndPoint, (int)resultBranchIndex );
}
}
// Find the result branch to grow, by finding the one with the closest distance to a branchLine
int minDistanceBrIdx = -1;
DistToEndPoint closestEndPoint( HUGE_VAL, m_branchLines.end(), true );
for ( auto& brIdx_DistToEndPointSet : resBranchIdxToBranchLineEndPointsDists )
{
if ( brIdx_DistToEndPointSet.second.begin()->dist < closestEndPoint.dist )
{
minDistanceBrIdx = brIdx_DistToEndPointSet.first;
closestEndPoint = *( brIdx_DistToEndPointSet.second.begin() );
}
}
// Grow the result branch with the branchLine
auto closestEndPointIt = resBranchIdxToBranchLineEndPointsDists[minDistanceBrIdx].begin();
auto branchLineToAddIt = closestEndPointIt->branchLineIt;
addBranchLineToWellResultBranch( minDistanceBrIdx, branchLineToAddIt, closestEndPointIt->toFrontOfBranchLine );
// Remove the branchLine from the control datastructures
unusedBranchLineIterators.erase( branchLineToAddIt );
resBranchIdxToBranchLineEndPointsDists.erase( minDistanceBrIdx );
removeBranchLineFromDistanceMap( branchLineToAddIt );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultFrame splittedWellResultFrame() { return m_branchedWell; }
private:
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void addBranchLineToLastWellResultBranch( std::list<std::pair<bool, std::deque<size_t>>>::iterator branchLineIt,
bool startAtFront )
{
addBranchLineToWellResultBranch( static_cast<int>( m_branchedWell.m_wellResultBranches.size() ) - 1,
branchLineIt,
startAtFront );
}
//--------------------------------------------------------------------------------------------------
/// branchIdx == -1 creates a new branch
//--------------------------------------------------------------------------------------------------
void addBranchLineToWellResultBranch( int branchIdx,
std::list<std::pair<bool, std::deque<size_t>>>::iterator branchLineIt,
bool startAtFront )
{
if ( branchIdx < 0 )
{
m_branchedWell.m_wellResultBranches.push_back( RigWellResultBranch() );
branchIdx = static_cast<int>( m_branchedWell.m_wellResultBranches.size() ) - 1;
RigWellResultPoint wellHeadAsPoint;
const RigCell& whCell = m_eclipseCaseData->cellFromWellResultCell( m_orgWellResultFrame.wellHeadOrStartCell() );
cvf::Vec3d whStartPos = whCell.faceCenter( cvf::StructGridInterface::NEG_K );
wellHeadAsPoint.m_bottomPosition = whStartPos;
m_branchedWell.m_wellResultBranches[branchIdx].m_branchResultPoints.push_back( wellHeadAsPoint );
}
RigWellResultBranch& currentBranch = m_branchedWell.m_wellResultBranches[branchIdx];
std::deque<size_t> wellCellIndices = branchLineIt->second;
if ( !startAtFront ) std::reverse( wellCellIndices.begin(), wellCellIndices.end() );
const std::vector<RigWellResultPoint>& orgWellResultPoints =
m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
#if 1
if ( wellCellIndices.size() )
{
if ( !branchLineIt->first ) // Is real branch, with first cell as cell *before* entry point on main branch
{
RigWellResultPoint branchStartAsResultPoint;
const RigCell& branchStartCell =
m_eclipseCaseData->cellFromWellResultCell( orgWellResultPoints[wellCellIndices.front()] );
cvf::Vec3d branchStartPos = branchStartCell.center();
if ( wellCellIndices.size() > 1 )
{
// Use the shared face between the cell before, and the branching cell as start point for the
// branch, to make the pipe "whole"
cvf::StructGridInterface::FaceType sharedFace = cvf::StructGridInterface::NO_FACE;
m_eclipseCaseData->findSharedSourceFace( sharedFace,
orgWellResultPoints[wellCellIndices[0]],
orgWellResultPoints[wellCellIndices[1]] );
if ( sharedFace != cvf::StructGridInterface::NO_FACE )
{
branchStartPos = branchStartCell.faceCenter( sharedFace );
}
}
branchStartAsResultPoint.m_bottomPosition = branchStartPos;
m_branchedWell.m_wellResultBranches[branchIdx].m_branchResultPoints.push_back( branchStartAsResultPoint );
}
else
{
currentBranch.m_branchResultPoints.push_back( orgWellResultPoints[wellCellIndices.front()] );
}
for ( size_t i = 1; i < wellCellIndices.size(); ++i )
{
size_t wcIdx = wellCellIndices[i];
currentBranch.m_branchResultPoints.push_back( orgWellResultPoints[wcIdx] );
}
}
#else
for ( size_t wcIdx : wellCellIndices )
{
currentBranch.m_branchResultPoints.push_back( orgWellResultPoints[wcIdx] );
}
#endif
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildCellSearchTree()
{
const std::vector<RigWellResultPoint>& orgWellResultPoints =
m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
size_t cellCount = orgWellResultPoints.size();
m_cellBoundingBoxes.resize( cellCount );
const std::vector<cvf::Vec3d>& nodes = m_eclipseCaseData->mainGrid()->nodes();
for ( size_t cIdx = 0; cIdx < cellCount; ++cIdx )
{
if ( !orgWellResultPoints[cIdx].isCell() ) continue;
const RigCell& wellCell = m_eclipseCaseData->cellFromWellResultCell( orgWellResultPoints[cIdx] );
if ( wellCell.isInvalid() ) continue;
const std::array<size_t, 8>& cellIndices = wellCell.cornerIndices();
cvf::BoundingBox& cellBB = m_cellBoundingBoxes[cIdx];
cellBB.add( nodes[cellIndices[0]] );
cellBB.add( nodes[cellIndices[1]] );
cellBB.add( nodes[cellIndices[2]] );
cellBB.add( nodes[cellIndices[3]] );
cellBB.add( nodes[cellIndices[4]] );
cellBB.add( nodes[cellIndices[5]] );
cellBB.add( nodes[cellIndices[6]] );
cellBB.add( nodes[cellIndices[7]] );
}
m_cellSearchTree.buildTreeFromBoundingBoxes( m_cellBoundingBoxes, nullptr );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildCellsToNeighborsMap()
{
const std::vector<RigWellResultPoint>& orgWellResultPoints =
m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
size_t cellCount = orgWellResultPoints.size();
const std::vector<cvf::Vec3d>& nodes = m_eclipseCaseData->mainGrid()->nodes();
double cellSizeI, cellSizeJ, cellSizeK;
m_eclipseCaseData->mainGrid()->characteristicCellSizes( &cellSizeI, &cellSizeJ, &cellSizeK );
double stdArea = cellSizeK * ( cellSizeI + cellSizeJ ) * 0.5;
for ( size_t cIdx = 0; cIdx < cellCount; ++cIdx )
{
std::vector<size_t> closeCells;
m_cellSearchTree.findIntersections( m_cellBoundingBoxes[cIdx], &closeCells );
const RigCell& c1 = m_eclipseCaseData->cellFromWellResultCell( orgWellResultPoints[cIdx] );
m_cellsWithNeighbors[cIdx]; // Add an empty set for this cell, in case we have no neighbors
for ( size_t idxToCloseCell : closeCells )
{
if ( idxToCloseCell != cIdx && m_cellsWithNeighbors[cIdx].count( idxToCloseCell ) == 0 )
{
const RigCell& c2 = m_eclipseCaseData->cellFromWellResultCell( orgWellResultPoints[idxToCloseCell] );
std::vector<size_t> poygonIndices;
std::vector<cvf::Vec3d> intersections;
auto contactFace =
RigCellFaceGeometryTools::calculateCellFaceOverlap( c1,
c2,
*( m_eclipseCaseData->mainGrid() ),
&poygonIndices,
&intersections );
if ( contactFace != cvf::StructGridInterface::NO_FACE )
{
std::vector<cvf::Vec3d> realPolygon;
for ( size_t pIdx = 0; pIdx < poygonIndices.size(); ++pIdx )
{
if ( poygonIndices[pIdx] < nodes.size() )
realPolygon.push_back( nodes[poygonIndices[pIdx]] );
else
realPolygon.push_back( intersections[poygonIndices[pIdx] - nodes.size()] );
}
// Polygon area vector
cvf::Vec3d area = cvf::GeometryTools::polygonAreaNormal3D( realPolygon );
if ( area.length() < 1e-3 * stdArea ) continue;
m_cellsWithNeighbors[cIdx].insert( idxToCloseCell );
m_cellsWithNeighbors[idxToCloseCell].insert( cIdx );
}
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildUnusedCellsSet()
{
const std::vector<RigWellResultPoint>& orgWellResultPoints =
m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
size_t cellCount = orgWellResultPoints.size();
for ( size_t i = 0; i < cellCount; ++i )
{
if ( orgWellResultPoints[i].isCell() ) m_unusedWellCellIndices.insert( i );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void buildBranchLinesOfContinousNeighbourCells()
{
for ( auto& cellWithNeighborsPair : m_cellsWithNeighbors )
{
auto it = m_unusedWellCellIndices.find( cellWithNeighborsPair.first );
if ( it != m_unusedWellCellIndices.end() )
{
m_unusedWellCellIndices.erase( it );
// Create a new branchline containing the cell itself.
m_branchLines.push_back( std::make_pair( true, std::deque<size_t>() ) );
auto currentBranchLineIt = std::prev( m_branchLines.end() );
auto& branchList = currentBranchLineIt->second;
branchList.push_back( cellWithNeighborsPair.first );
unsigned endToGrow = 0; // 0 end, 1 front, > 1 new branch
size_t neighbour = findBestNeighbor( cellWithNeighborsPair.first, cellWithNeighborsPair.second );
while ( neighbour != cvf::UNDEFINED_SIZE_T )
{
m_unusedWellCellIndices.erase( neighbour );
if ( endToGrow == 0 )
{
branchList.push_back( neighbour );
growBranchListEnd( currentBranchLineIt );
endToGrow++;
}
else if ( endToGrow == 1 )
{
branchList.push_front( neighbour );
growBranchListFront( currentBranchLineIt );
endToGrow++;
}
else // if ( endToGrow > 1 )
{
m_branchLines.push_back( std::make_pair( false,
std::deque<size_t>{ branchList.front(),
cellWithNeighborsPair.first,
neighbour } ) );
auto newBranchLineIt = std::prev( m_branchLines.end() );
growBranchListEnd( newBranchLineIt );
if ( newBranchLineIt->second.size() == 3 )
{
// No real contribution from the branch.
// Put the cell into main stem
// Todo
}
}
neighbour = findBestNeighbor( cellWithNeighborsPair.first, cellWithNeighborsPair.second );
}
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t findBestNeighbor( size_t cell, std::set<size_t> neighbors )
{
size_t posKNeighbor = cvf::UNDEFINED_SIZE_T;
size_t firstUnused = cvf::UNDEFINED_SIZE_T;
const std::vector<RigWellResultPoint>& orgWellResultPoints =
m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
for ( size_t neighbor : neighbors )
{
if ( m_unusedWellCellIndices.count( neighbor ) )
{
cvf::StructGridInterface::FaceType sharedFace;
m_eclipseCaseData->findSharedSourceFace( sharedFace,
orgWellResultPoints[cell],
orgWellResultPoints[neighbor] );
if ( sharedFace == cvf::StructGridInterface::NEG_K ) return neighbor;
if ( sharedFace == cvf::StructGridInterface::POS_K )
posKNeighbor = neighbor;
else if ( firstUnused == cvf::UNDEFINED_SIZE_T )
{
firstUnused = neighbor;
}
}
}
if ( posKNeighbor != cvf::UNDEFINED_SIZE_T )
{
return posKNeighbor;
}
else
{
return firstUnused;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void growBranchListEnd( std::list<std::pair<bool, std::deque<size_t>>>::iterator branchListIt )
{
std::deque<size_t>& branchList = branchListIt->second;
CVF_ASSERT( branchList.size() );
size_t startCell = branchList.back();
size_t prevCell = cvf::UNDEFINED_SIZE_T;
size_t startCellPosInStem = branchList.size() - 1;
if ( branchList.size() > 1 ) prevCell = branchList[branchList.size() - 2];
const auto& neighbors = m_cellsWithNeighbors[startCell];
size_t nb = findBestNeighbor( startCell, neighbors );
if ( nb != cvf::UNDEFINED_SIZE_T )
{
branchList.push_back( nb );
m_unusedWellCellIndices.erase( nb );
growBranchListEnd( branchListIt );
}
startAndGrowSeparateBranchesFromRestOfNeighbors( startCell, prevCell, neighbors, branchList, startCellPosInStem, true );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void startAndGrowSeparateBranchesFromRestOfNeighbors( size_t startCell,
size_t prevCell,
const std::set<size_t>& neighbors,
std::deque<size_t> mainStem,
size_t branchPosInMainStem,
bool stemEndIsGrowing )
{
size_t nb = findBestNeighbor( startCell, neighbors );
while ( nb != cvf::UNDEFINED_SIZE_T )
{
if ( prevCell == cvf::UNDEFINED_SIZE_T )
{
m_branchLines.push_back( std::make_pair( false, std::deque<size_t>{ startCell, nb } ) );
}
else
{
m_branchLines.push_back( std::make_pair( false, std::deque<size_t>{ prevCell, startCell, nb } ) );
}
m_unusedWellCellIndices.erase( nb );
auto lastBranchIt = std::prev( m_branchLines.end() );
size_t separateBranchStartSize = lastBranchIt->second.size();
growBranchListEnd( lastBranchIt );
if ( lastBranchIt->second.size() == separateBranchStartSize )
{
// No use in this branch.
// put cell into main stem instead
if ( stemEndIsGrowing )
mainStem.insert( mainStem.begin() + branchPosInMainStem, nb );
else
mainStem.insert( mainStem.end() - branchPosInMainStem, nb );
m_branchLines.erase( lastBranchIt );
}
nb = findBestNeighbor( startCell, neighbors );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void growBranchListFront( std::list<std::pair<bool, std::deque<size_t>>>::iterator branchListIt )
{
std::deque<size_t>& branchList = branchListIt->second;
CVF_ASSERT( branchList.size() );
size_t startCell = branchList.front();
size_t prevCell = cvf::UNDEFINED_SIZE_T;
size_t startCellPosInStem = branchList.size() - 1;
if ( branchList.size() > 1 ) prevCell = branchList[1];
const auto& neighbors = m_cellsWithNeighbors[startCell];
size_t nb = findBestNeighbor( startCell, neighbors );
if ( nb != cvf::UNDEFINED_SIZE_T )
{
branchList.push_front( nb );
m_unusedWellCellIndices.erase( nb );
growBranchListFront( branchListIt );
}
startAndGrowSeparateBranchesFromRestOfNeighbors( startCell, prevCell, neighbors, branchList, startCellPosInStem, false );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double calculateFrontToPointDistance( const std::deque<size_t>& second, const cvf::Vec3d& point )
{
// Todo, more fancy virtual curvature based distance using an estimated direction from the branch-end
return calculateWellCellToPointDistance( second.front(), point );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double calculateEndToPointDistance( const std::deque<size_t>& second, const cvf::Vec3d& point )
{
// Todo, more fancy virtual curvature based distance using an estimated direction from the branch-end
return calculateWellCellToPointDistance( second.back(), point );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double calculateWellCellToPointDistance( size_t wellCellIdx, const cvf::Vec3d& point )
{
const std::vector<RigWellResultPoint>& orgWellResultPoints =
m_orgWellResultFrame.m_wellResultBranches[0].m_branchResultPoints;
const RigCell& c = m_eclipseCaseData->cellFromWellResultCell( orgWellResultPoints[wellCellIdx] );
cvf::Vec3d cellCenter = c.center();
return ( point - cellCenter ).length();
}
private:
// The bool tells if this can be expanded in the front,
// Set to false when the branchLine starts from a branching cell (cell with more than two neighbors)
std::list<std::pair<bool, std::deque<size_t>>> m_branchLines;
std::vector<cvf::BoundingBox> m_cellBoundingBoxes;
cvf::BoundingBoxTree m_cellSearchTree;
std::map<size_t, std::set<size_t>> m_cellsWithNeighbors;
std::set<size_t> m_unusedWellCellIndices;
RigWellResultFrame m_branchedWell;
const RigEclipseCaseData* m_eclipseCaseData;
const RigWellResultFrame& m_orgWellResultFrame;
};
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultFrame RigSimulationWellCenterLineCalculator::splitIntoBranches( const RigWellResultFrame& wellResultFrame,
const RigEclipseCaseData* eclipseCaseData )
{
BranchSplitter splitter( wellResultFrame, eclipseCaseData );
return splitter.splittedWellResultFrame();
}