mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-08 07:03:25 -06:00
1297 lines
47 KiB
C++
1297 lines
47 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) Statoil ASA
|
|
// Copyright (C) Ceetron Solutions AS
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "cvfGeometryTools.h"
|
|
|
|
namespace cvf
|
|
{
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d
|
|
GeometryTools::computeFaceCenter( const cvf::Vec3d& v0, const cvf::Vec3d& v1, const cvf::Vec3d& v2, const cvf::Vec3d& v3 )
|
|
{
|
|
cvf::Vec3d centerCoord = v0;
|
|
centerCoord += v1;
|
|
centerCoord += v2;
|
|
centerCoord += v3;
|
|
centerCoord *= 0.25;
|
|
|
|
return centerCoord;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::computeTriangleCenter( const cvf::Vec3d& v0, const cvf::Vec3d& v1, const cvf::Vec3d& v2 )
|
|
{
|
|
cvf::Vec3d centerCoord = v0;
|
|
centerCoord += v1;
|
|
centerCoord += v2;
|
|
centerCoord /= 3.0;
|
|
|
|
return centerCoord;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Ez = Plane normal, Ex = in XY plane (horizontal), Ey = semi vertical upwards
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Mat3f GeometryTools::computePlaneHorizontalRotationMx( const cvf::Vec3f& inPlaneVec0, const cvf::Vec3f& inPlaneVec1 )
|
|
{
|
|
cvf::Vec3f Ez = inPlaneVec0 ^ inPlaneVec1;
|
|
|
|
if ( !Ez.normalize() ) return cvf::Mat3f::IDENTITY;
|
|
|
|
cvf::Vec3f Ex = Ez ^ cvf::Vec3f::Z_AXIS;
|
|
|
|
if ( !Ex.normalize() ) return cvf::Mat3f::IDENTITY;
|
|
|
|
cvf::Vec3f Ey = Ez ^ Ex;
|
|
|
|
if ( Ey[2] < 0.0f ) // Semi vertical is down
|
|
{
|
|
return cvf::Mat3f( -Ex[0], -Ex[1], -Ex[2], -Ey[0], -Ey[1], -Ey[2], Ez[0], Ez[1], Ez[2] );
|
|
}
|
|
else
|
|
{
|
|
return cvf::Mat3f( Ex[0], Ex[1], Ex[2], Ey[0], Ey[1], Ey[2], Ez[0], Ez[1], Ez[2] );
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
int GeometryTools::findClosestAxis( const cvf::Vec3d& vec )
|
|
{
|
|
int closestAxis = 0;
|
|
double maxComponent = fabs( vec.x() );
|
|
|
|
if ( fabs( vec.y() ) > maxComponent )
|
|
{
|
|
maxComponent = (float)fabs( vec.y() );
|
|
closestAxis = 1;
|
|
}
|
|
|
|
if ( fabs( vec.z() ) > maxComponent )
|
|
{
|
|
closestAxis = 2;
|
|
}
|
|
|
|
return closestAxis;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Return angle between vectors if v1 x v2 is same way as normal
|
|
/// else return 2PI - angle
|
|
/// This means if the angle is slightly "negative", using the right hand rule, this method will return
|
|
/// nearly 2*PI
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
double const MY_PI = 4 * atan( 1.0 );
|
|
|
|
double GeometryTools::getAngle( const cvf::Vec3d& positiveNormalAxis, const cvf::Vec3d& v1, const cvf::Vec3d& v2 )
|
|
{
|
|
bool isOk = false;
|
|
cvf::Vec3d v1N = v1.getNormalized( &isOk );
|
|
if ( !isOk ) return 0;
|
|
cvf::Vec3d v2N = v2.getNormalized( &isOk );
|
|
if ( !isOk ) return 0;
|
|
|
|
double cosAng = v1N * v2N;
|
|
// Guard acos against out-of-domain input
|
|
if ( cosAng <= -1.0 )
|
|
{
|
|
cosAng = -1.0;
|
|
}
|
|
else if ( cosAng >= 1.0 )
|
|
{
|
|
cosAng = 1.0;
|
|
}
|
|
double angle = acos( cosAng );
|
|
|
|
cvf::Vec3d crossProd = v1N ^ v2N;
|
|
double sign = positiveNormalAxis * crossProd;
|
|
if ( sign < 0 )
|
|
{
|
|
angle = 2 * MY_PI - angle;
|
|
}
|
|
return angle;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Return angle in radians between vectors [0, Pi]
|
|
/// If v1 or v2 is zero, the method will return 0.
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
double GeometryTools::getAngle( const cvf::Vec3d& v1, const cvf::Vec3d& v2 )
|
|
{
|
|
bool isOk = false;
|
|
|
|
cvf::Vec3d v1N = v1.getNormalized( &isOk );
|
|
if ( !isOk ) return 0;
|
|
|
|
cvf::Vec3d v2N = v2.getNormalized( &isOk );
|
|
if ( !isOk ) return 0;
|
|
|
|
double cosAng = v1N * v2N;
|
|
// Guard acos against out-of-domain input
|
|
if ( cosAng <= -1.0 )
|
|
{
|
|
cosAng = -1.0;
|
|
}
|
|
else if ( cosAng >= 1.0 )
|
|
{
|
|
cosAng = 1.0;
|
|
}
|
|
double angle = acos( cosAng );
|
|
|
|
return angle;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double GeometryTools::signedAreaPlanarPolygon( const cvf::Vec3d& planeNormal, const std::vector<cvf::Vec3d>& polygon )
|
|
{
|
|
int Z = findClosestAxis( planeNormal );
|
|
int X = ( Z + 1 ) % 3;
|
|
int Y = ( Z + 2 ) % 3;
|
|
|
|
// Use Shoelace formula to calculate signed area.
|
|
// https://en.wikipedia.org/wiki/Shoelace_formula
|
|
double signedArea = 0.0;
|
|
for ( size_t i = 0; i < polygon.size(); ++i )
|
|
{
|
|
signedArea += ( polygon[( i + 1 ) % polygon.size()][X] - polygon[i][X] ) *
|
|
( polygon[( i + 1 ) % polygon.size()][Y] + polygon[i][Y] );
|
|
}
|
|
return signedArea;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// This method below is more correct than the one above, both in naming and behaviour.
|
|
/// Should be replaced, but is not done now to avoid possible sideeffects
|
|
/// The difference is the sign of the area. The one below retuns correct sign according to the plane normal
|
|
/// provided
|
|
//--------------------------------------------------------------------------------------------------
|
|
template <typename Vec3Type>
|
|
double closestAxisSignedAreaPlanarPolygon( const cvf::Vec3d& planeNormal, const std::vector<Vec3Type>& polygon )
|
|
{
|
|
int Z = cvf::GeometryTools::findClosestAxis( planeNormal );
|
|
int X = ( Z + 1 ) % 3;
|
|
int Y = ( Z + 2 ) % 3;
|
|
|
|
// Use Shoelace formula to calculate signed area.
|
|
// https://en.wikipedia.org/wiki/Shoelace_formula
|
|
double signedArea = 0.0;
|
|
for ( size_t i = 0; i < polygon.size(); ++i )
|
|
{
|
|
signedArea += ( polygon[( i + 1 ) % polygon.size()][X] + polygon[i][X] ) *
|
|
( polygon[( i + 1 ) % polygon.size()][Y] - polygon[i][Y] );
|
|
}
|
|
|
|
return ( planeNormal[Z] > 0 ) ? signedArea : -signedArea;
|
|
}
|
|
|
|
/*
|
|
Determine the intersection point of two line segments
|
|
From Paul Bourke, but modified to really handle coincident lines
|
|
and lines with touching vertexes.
|
|
Returns an intersection status telling what kind of intersection it is (if any)
|
|
*/
|
|
|
|
GeometryTools::IntersectionStatus inPlaneLineIntersect( double x1,
|
|
double y1,
|
|
double x2,
|
|
double y2,
|
|
double x3,
|
|
double y3,
|
|
double x4,
|
|
double y4,
|
|
double l1NormalizedTolerance,
|
|
double l2NormalizedTolerance,
|
|
double* x,
|
|
double* y,
|
|
double* fractionAlongLine1,
|
|
double* fractionAlongLine2 )
|
|
{
|
|
double mua, mub;
|
|
double denom, numera, numerb;
|
|
|
|
denom = ( y4 - y3 ) * ( x2 - x1 ) - ( x4 - x3 ) * ( y2 - y1 );
|
|
numera = ( x4 - x3 ) * ( y1 - y3 ) - ( y4 - y3 ) * ( x1 - x3 );
|
|
numerb = ( x2 - x1 ) * ( y1 - y3 ) - ( y2 - y1 ) * ( x1 - x3 );
|
|
|
|
double EPS = 1e-40;
|
|
|
|
// Are the line coincident?
|
|
if ( fabs( numera ) < EPS && fabs( numerb ) < EPS && fabs( denom ) < EPS )
|
|
{
|
|
#if 0
|
|
*x = 0;
|
|
*y = 0;
|
|
*fractionAlongLine1 = 0;
|
|
*fractionAlongLine2 = 0;
|
|
return GeometryTools::LINES_OVERLAP;
|
|
#else
|
|
cvf::Vec3d p12( x2 - x1, y2 - y1, 0 );
|
|
cvf::Vec3d p13( x3 - x1, y3 - y1, 0 );
|
|
cvf::Vec3d p34( x4 - x3, y4 - y3, 0 );
|
|
|
|
double length12 = p12.length();
|
|
double length34 = p34.length();
|
|
|
|
// Check if the p1 p2 line is a point
|
|
|
|
if ( length12 < EPS )
|
|
{
|
|
*x = x1;
|
|
*y = y1;
|
|
*fractionAlongLine1 = 1;
|
|
*fractionAlongLine2 = p13.length() / p34.length();
|
|
return GeometryTools::LINES_OVERLAP;
|
|
}
|
|
|
|
cvf::Vec3d p14( x4 - x1, y4 - y1, 0 );
|
|
cvf::Vec3d p32( x2 - x3, y2 - y3, 0 );
|
|
|
|
cvf::Vec3d e12 = p12.getNormalized();
|
|
double normDist13 = e12 * p13 / length12;
|
|
double normDist14 = e12 * p14 / length12;
|
|
|
|
// Check if both points on the p3 p4 line is outside line p1 p2.
|
|
if ( ( normDist13 < 0 - l1NormalizedTolerance && normDist14 < 0 - l1NormalizedTolerance ) ||
|
|
( normDist13 > 1 + l1NormalizedTolerance && normDist14 > 1 + l1NormalizedTolerance ) )
|
|
{
|
|
*x = 0;
|
|
*y = 0;
|
|
*fractionAlongLine1 = 0;
|
|
*fractionAlongLine2 = 0;
|
|
return GeometryTools::NO_INTERSECTION;
|
|
}
|
|
|
|
double normDist32 = e12 * p32 / length34;
|
|
// double normDist31 = -e12*p13 / length34;
|
|
|
|
// Set up fractions along lines to the edge2 vertex actually touching edge 1.
|
|
/// if two, select the one furthest from the start
|
|
bool pt3IsInside = false;
|
|
bool pt4IsInside = false;
|
|
if ( ( 0.0 - l1NormalizedTolerance ) <= normDist13 && normDist13 <= ( 1.0 + l1NormalizedTolerance ) )
|
|
pt3IsInside = true;
|
|
if ( ( 0.0 - l1NormalizedTolerance ) <= normDist14 && normDist14 <= ( 1.0 + l1NormalizedTolerance ) )
|
|
pt4IsInside = true;
|
|
|
|
if ( pt3IsInside && !pt4IsInside )
|
|
{
|
|
*fractionAlongLine1 = normDist13;
|
|
*fractionAlongLine2 = 0.0;
|
|
*x = x3;
|
|
*y = y3;
|
|
}
|
|
else if ( pt4IsInside && !pt3IsInside )
|
|
{
|
|
*fractionAlongLine1 = normDist14;
|
|
*fractionAlongLine2 = 1.0;
|
|
*x = x4;
|
|
*y = y4;
|
|
}
|
|
else if ( pt3IsInside && pt4IsInside )
|
|
{
|
|
// Return edge 2 vertex furthest along edge 1
|
|
if ( normDist13 <= normDist14 )
|
|
{
|
|
*fractionAlongLine1 = normDist14;
|
|
*fractionAlongLine2 = 1.0;
|
|
*x = x4;
|
|
*y = y4;
|
|
}
|
|
else
|
|
{
|
|
*fractionAlongLine1 = normDist13;
|
|
*fractionAlongLine2 = 0.0;
|
|
*x = x3;
|
|
*y = y3;
|
|
}
|
|
}
|
|
else // both outside on each side
|
|
{
|
|
// Return End of edge 1
|
|
*fractionAlongLine1 = 1.0;
|
|
*fractionAlongLine2 = normDist32;
|
|
*x = x2;
|
|
*y = y2;
|
|
}
|
|
|
|
return GeometryTools::LINES_OVERLAP;
|
|
#endif
|
|
}
|
|
|
|
/* Are the line parallel */
|
|
if ( fabs( denom ) < EPS )
|
|
{
|
|
*x = 0;
|
|
*y = 0;
|
|
*fractionAlongLine1 = 0;
|
|
*fractionAlongLine2 = 0;
|
|
|
|
return GeometryTools::NO_INTERSECTION;
|
|
}
|
|
|
|
/* Is the intersection along the the segments */
|
|
mua = numera / denom;
|
|
mub = numerb / denom;
|
|
|
|
*x = x1 + mua * ( x2 - x1 );
|
|
*y = y1 + mua * ( y2 - y1 );
|
|
*fractionAlongLine1 = mua;
|
|
*fractionAlongLine2 = mub;
|
|
|
|
if ( mua < 0 - l1NormalizedTolerance || 1 + l1NormalizedTolerance < mua || mub < 0 - l2NormalizedTolerance ||
|
|
1 + l2NormalizedTolerance < mub )
|
|
{
|
|
return GeometryTools::LINES_INTERSECT_OUTSIDE;
|
|
}
|
|
else if ( fabs( mua ) < l1NormalizedTolerance || fabs( 1 - mua ) < l1NormalizedTolerance ||
|
|
fabs( mub ) < l2NormalizedTolerance || fabs( 1 - mub ) < l2NormalizedTolerance )
|
|
{
|
|
if ( fabs( mua ) < l1NormalizedTolerance ) *fractionAlongLine1 = 0;
|
|
if ( fabs( 1 - mua ) < l1NormalizedTolerance ) *fractionAlongLine1 = 1;
|
|
if ( fabs( mub ) < l2NormalizedTolerance ) *fractionAlongLine2 = 0;
|
|
if ( fabs( 1 - mub ) < l2NormalizedTolerance ) *fractionAlongLine2 = 1;
|
|
return GeometryTools::LINES_TOUCH;
|
|
}
|
|
else
|
|
{
|
|
return GeometryTools::LINES_CROSSES;
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------------
|
|
/// Supposed to find the intersection point if lines intersect
|
|
/// It returns the intersection status telling if the lines only touch or are overlapping
|
|
//----------------------------------------------------------------------------------------------------------
|
|
|
|
GeometryTools::IntersectionStatus GeometryTools::inPlaneLineIntersect3D( const cvf::Vec3d& planeNormal,
|
|
const cvf::Vec3d& p1,
|
|
const cvf::Vec3d& p2,
|
|
const cvf::Vec3d& p3,
|
|
const cvf::Vec3d& p4,
|
|
cvf::Vec3d* intersectionPoint,
|
|
double* fractionAlongLine1,
|
|
double* fractionAlongLine2,
|
|
double tolerance )
|
|
{
|
|
CVF_ASSERT( intersectionPoint != nullptr );
|
|
|
|
int Z = findClosestAxis( planeNormal );
|
|
int X = ( Z + 1 ) % 3;
|
|
int Y = ( Z + 2 ) % 3;
|
|
double x, y;
|
|
|
|
// Todo: handle zero length edges
|
|
double l1NormTol = tolerance / ( p2 - p1 ).length();
|
|
double l2NormTol = tolerance / ( p4 - p3 ).length();
|
|
|
|
IntersectionStatus intersectionStatus = inPlaneLineIntersect( p1[X],
|
|
p1[Y],
|
|
p2[X],
|
|
p2[Y],
|
|
p3[X],
|
|
p3[Y],
|
|
p4[X],
|
|
p4[Y],
|
|
l1NormTol,
|
|
l2NormTol,
|
|
&x,
|
|
&y,
|
|
fractionAlongLine1,
|
|
fractionAlongLine2 );
|
|
|
|
// Check if we have a valid intersection point
|
|
if ( intersectionStatus == NO_INTERSECTION || intersectionStatus == LINES_OVERLAP )
|
|
{
|
|
intersectionPoint->setZero();
|
|
}
|
|
else
|
|
{
|
|
*intersectionPoint = p1 + ( *fractionAlongLine1 ) * ( p2 - p1 );
|
|
}
|
|
|
|
return intersectionStatus;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Compute projection of point p3 on the line p1 - p2
|
|
// If projection is out side the line segment, the end of line is returned
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::projectPointOnLine( const cvf::Vec3d& p1,
|
|
const cvf::Vec3d& p2,
|
|
const cvf::Vec3d& p3,
|
|
double* normalizedIntersection )
|
|
{
|
|
cvf::Vec3d v31 = p3 - p1;
|
|
cvf::Vec3d v21 = p2 - p1;
|
|
|
|
double u = ( v31 * v21 ) / ( v21 * v21 );
|
|
cvf::Vec3d projectedPoint( 0, 0, 0 );
|
|
if ( 0 < u && u < 1 )
|
|
projectedPoint = p1 + u * v21;
|
|
else if ( u <= 0 )
|
|
projectedPoint = p1;
|
|
else
|
|
projectedPoint = p2;
|
|
|
|
if ( normalizedIntersection )
|
|
{
|
|
*normalizedIntersection = u;
|
|
}
|
|
|
|
return projectedPoint;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// TODO: Use GeometryTools::projectPointOnLine
|
|
//--------------------------------------------------------------------------------------------------
|
|
double GeometryTools::linePointSquareDist( const cvf::Vec3d& p1, const cvf::Vec3d& p2, const cvf::Vec3d& p3 )
|
|
{
|
|
cvf::Vec3d v31 = p3 - p1;
|
|
cvf::Vec3d v21 = p2 - p1;
|
|
|
|
double geomTolerance = 1e-24;
|
|
if ( v21.lengthSquared() < geomTolerance )
|
|
{
|
|
// P2 and P1 coincide, use distance from P3 to P1
|
|
return v31.lengthSquared();
|
|
}
|
|
|
|
double u = ( v31 * v21 ) / ( v21 * v21 );
|
|
cvf::Vec3d pOnLine( 0, 0, 0 );
|
|
if ( 0 < u && u < 1 )
|
|
pOnLine = p1 + u * v21;
|
|
else if ( u <= 0 )
|
|
pOnLine = p1;
|
|
else
|
|
pOnLine = p2;
|
|
|
|
return ( p3 - pOnLine ).lengthSquared();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Copyright 2001, softSurfer (www.softsurfer.com)
|
|
// This code may be freely used and modified for any purpose
|
|
// providing that this copyright notice is included with it.
|
|
// SoftSurfer makes no warranty for this code, and cannot be held
|
|
// liable for any real or imagined damage resulting from its use.
|
|
// Users of this code must verify correctness for their application.
|
|
// http://www.softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm
|
|
//
|
|
/// Intersect a line segment with a 3D triangle
|
|
/// Input: A line segment p0, p1. A triangle t0, t1, t2.
|
|
/// Output: *intersectionPoint = intersection point (when it exists)
|
|
/// Return: -1 = triangle is degenerate (a segment or point)
|
|
/// 0 = disjoint (no intersect)
|
|
/// 1 = intersect in unique point I1
|
|
/// 2 = are in the same plane
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
#define SMALL_NUM 0.00000001 // anything that avoids division overflow
|
|
// dot product (3D) which allows vector operations in arguments
|
|
#define dot( u, v ) ( ( u ).x() * ( v ).x() + ( u ).y() * ( v ).y() + ( u ).z() * ( v ).z() )
|
|
|
|
int GeometryTools::intersectLineSegmentTriangle( const cvf::Vec3d& p0,
|
|
const cvf::Vec3d& p1,
|
|
const cvf::Vec3d& t0,
|
|
const cvf::Vec3d& t1,
|
|
const cvf::Vec3d& t2,
|
|
cvf::Vec3d* intersectionPoint,
|
|
bool* isLineDirDotNormalNegative )
|
|
{
|
|
CVF_TIGHT_ASSERT( intersectionPoint != nullptr );
|
|
CVF_TIGHT_ASSERT( isLineDirDotNormalNegative != nullptr );
|
|
|
|
cvf::Vec3d u, v, n; // triangle vectors
|
|
cvf::Vec3d dir, w0, w; // ray vectors
|
|
double r, a, b; // params to calc ray-plane intersect
|
|
|
|
// get triangle edge vectors and plane normal
|
|
u = t1 - t0;
|
|
v = t2 - t0;
|
|
n = u ^ v; // cross product
|
|
if ( n == cvf::Vec3d::ZERO ) // triangle is degenerate
|
|
return -1; // do not deal with this case
|
|
|
|
dir = p1 - p0; // ray direction vector
|
|
w0 = p0 - t0;
|
|
a = -dot( n, w0 );
|
|
b = dot( n, dir );
|
|
|
|
( *isLineDirDotNormalNegative ) = ( b < 0.0 );
|
|
|
|
if ( fabs( b ) < SMALL_NUM )
|
|
{ // ray is parallel to triangle plane
|
|
if ( a == 0 ) // ray lies in triangle plane
|
|
return 2;
|
|
else
|
|
return 0; // ray disjoint from plane
|
|
}
|
|
|
|
// get intersect point of ray with triangle plane
|
|
r = a / b;
|
|
if ( r < 0.0 ) // ray goes away from triangle
|
|
return 0; // => no intersect
|
|
|
|
if ( r > 1.0 ) // Line segment does not reach triangle
|
|
return 0;
|
|
|
|
*intersectionPoint = p0 + r * dir; // intersect point of ray and plane
|
|
|
|
// is I inside T?
|
|
double uu, uv, vv, wu, wv, D;
|
|
uu = dot( u, u );
|
|
uv = dot( u, v );
|
|
vv = dot( v, v );
|
|
w = *intersectionPoint - t0;
|
|
wu = dot( w, u );
|
|
wv = dot( w, v );
|
|
D = uv * uv - uu * vv;
|
|
|
|
// get and test parametric coords
|
|
double s, t;
|
|
s = ( uv * wv - vv * wu ) / D;
|
|
if ( s < 0.0 || s > 1.0 ) // I is outside T
|
|
return 0;
|
|
|
|
t = ( uv * wu - uu * wv ) / D;
|
|
if ( t < 0.0 || ( s + t ) > 1.0 ) // I is outside T
|
|
return 0;
|
|
|
|
return 1; // I is in T
|
|
}
|
|
|
|
/*
|
|
// t0 = (x0, y0, z0)
|
|
// t1 = (x1, y1, z1)
|
|
// t2 = (x2, y2, z2)
|
|
//
|
|
// p = (xp, yp, zp)
|
|
|
|
cvf::Vec3d barycentricCoordsExperiment(const cvf::Vec3d& t0, const cvf::Vec3d& t1, const cvf::Vec3d& t2, const
|
|
cvf::Vec3d& p)
|
|
{
|
|
det = x0(y1*z2 - y2*z1) + x1(y2*z0 - z2*y0) + x2(y0*z1 - y1*z0);
|
|
|
|
b0 = ((x1 * y2 - x2*y1)*zp + xp*(y1*z2-y2*z1) + yp*(x2*z1-x1*z2)) / det;
|
|
b1 = ((x2 * y0 - x0*y2)*zp + xp*(y2*z0-y0*z2) + yp*(x0*z2-x2*z0)) / det;
|
|
b2 = ((x0 * y1 - x1*y0)*zp + xp*(y0*z1-y1*z0) + yp*(x1*z0-x0*z1)) / det;
|
|
}
|
|
|
|
*/
|
|
|
|
inline double TriArea2D( double x1, double y1, double x2, double y2, double x3, double y3 )
|
|
{
|
|
return ( x1 - x2 ) * ( y2 - y3 ) - ( x2 - x3 ) * ( y1 - y2 );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
// Compute barycentric coordinates (area coordinates) (u, v, w) for
|
|
// point p with respect to triangle (t0, t1, t2)
|
|
// These can be used as weights for interpolating scalar values across the triangle
|
|
// Based on section 3.4 in "Real Time collision detection" by Christer Ericson
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d
|
|
GeometryTools::barycentricCoords( const cvf::Vec3d& t0, const cvf::Vec3d& t1, const cvf::Vec3d& t2, const cvf::Vec3d& p )
|
|
{
|
|
// Unnormalized triangle normal
|
|
cvf::Vec3d m = ( ( t1 - t0 ) ^ ( t2 - t0 ) );
|
|
|
|
// Absolute components for determining projection plane
|
|
int X = 0, Y = 1;
|
|
int Z = findClosestAxis( m );
|
|
switch ( Z )
|
|
{
|
|
case 0:
|
|
X = 1;
|
|
Y = 2;
|
|
break; // x is largest, project to the yz plane
|
|
case 1:
|
|
X = 0;
|
|
Y = 2;
|
|
break; // y is largest, project to the xz plane
|
|
case 2:
|
|
X = 0;
|
|
Y = 1;
|
|
break; // z is largest, project to the xy plane
|
|
}
|
|
|
|
// Compute areas in plane of largest projection
|
|
// Nominators and one-over-denominator for u and v ratios
|
|
double nu, nv, ood;
|
|
nu = TriArea2D( p[X], p[Y], t1[X], t1[Y], t2[X], t2[Y] ); // Area of PBC in yz plane
|
|
nv = TriArea2D( p[X], p[Y], t2[X], t2[Y], t0[X], t0[Y] ); // Area of PCA in yz plane
|
|
ood = 1.0f / m[Z]; // 1/(2*area of ABC in yz plane)
|
|
|
|
if ( Z == 1 ) ood = -ood; // For some reason not explained
|
|
|
|
// Normalize
|
|
|
|
m[0] = nu * ood;
|
|
m[1] = nv * ood;
|
|
m[2] = 1.0f - m[0] - m[1];
|
|
|
|
return m;
|
|
}
|
|
|
|
inline double triArea3D( const cvf::Vec3d& v0, const cvf::Vec3d& v1, const cvf::Vec3d& v2 )
|
|
{
|
|
return 0.5 * ( ( v1 - v0 ) ^ ( v2 - v0 ) ).length();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Barycentric coordinates of a Quad
|
|
/// See http://geometry.caltech.edu/pubs/MHBD02.pdf for details Eqn. 6.
|
|
/// W_i = a_i / Sum(a_0 ... a_3)
|
|
/// a_i = Area(v_(i-1), v_i, v_(i+1))*Area(p, v_(i-2), v_(i-1))*Area(p, v_(i+1), v_(i+2))
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec4d GeometryTools::barycentricCoords( const cvf::Vec3d& v0,
|
|
const cvf::Vec3d& v1,
|
|
const cvf::Vec3d& v2,
|
|
const cvf::Vec3d& v3,
|
|
const cvf::Vec3d& p )
|
|
{
|
|
cvf::Vec4d w;
|
|
cvf::Vec4d a;
|
|
|
|
a[0] = triArea3D( v3, v0, v1 ) * triArea3D( p, v2, v3 ) * triArea3D( p, v1, v2 );
|
|
a[1] = triArea3D( v0, v1, v2 ) * triArea3D( p, v3, v0 ) * triArea3D( p, v2, v3 );
|
|
a[2] = triArea3D( v1, v2, v3 ) * triArea3D( p, v0, v1 ) * triArea3D( p, v3, v0 );
|
|
a[3] = triArea3D( v2, v3, v0 ) * triArea3D( p, v1, v2 ) * triArea3D( p, v0, v1 );
|
|
|
|
double sum_a = a[0] + a[1] + a[2] + a[3];
|
|
|
|
w[0] = a[0] / sum_a;
|
|
w[1] = a[1] / sum_a;
|
|
w[2] = a[2] / sum_a;
|
|
w[3] = a[3] / sum_a;
|
|
|
|
return w;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void GeometryTools::addMidEdgeNodes( std::list<std::pair<cvf::uint, bool>>* polygon,
|
|
const cvf::Vec3dArray& nodes,
|
|
EdgeSplitStorage& edgeSplitStorage,
|
|
std::vector<cvf::Vec3d>* createdVertexes )
|
|
{
|
|
size_t newVertexIndex = nodes.size() + createdVertexes->size();
|
|
std::list<std::pair<cvf::uint, bool>>::iterator it;
|
|
std::list<std::pair<cvf::uint, bool>>::iterator it2;
|
|
|
|
cvf::Vec3d midEdgeCoord( 0, 0, 0 );
|
|
size_t midPointIndex = cvf::UNDEFINED_UINT;
|
|
|
|
for ( it = polygon->begin(); it != polygon->end(); ++it )
|
|
{
|
|
it2 = it;
|
|
++it2;
|
|
if ( it2 == polygon->end() ) it2 = polygon->begin();
|
|
|
|
// Find or Create and add a mid-edge node
|
|
|
|
if ( !edgeSplitStorage.findSplitPoint( it->first, it2->first, &midPointIndex ) )
|
|
{
|
|
midEdgeCoord.setZero();
|
|
midEdgeCoord += ( it->first < nodes.size() ) ? nodes[it->first]
|
|
: ( *createdVertexes )[it->first - nodes.size()];
|
|
midEdgeCoord += ( it2->first < nodes.size() ) ? nodes[it2->first]
|
|
: ( *createdVertexes )[it2->first - nodes.size()];
|
|
midEdgeCoord *= 0.5;
|
|
|
|
midPointIndex = newVertexIndex;
|
|
createdVertexes->push_back( midEdgeCoord );
|
|
++newVertexIndex;
|
|
|
|
edgeSplitStorage.addSplitPoint( it->first, it2->first, midPointIndex );
|
|
}
|
|
|
|
if ( it2 != polygon->begin() )
|
|
polygon->insert( it2, std::make_pair( (cvf::uint)midPointIndex, true ) );
|
|
else
|
|
polygon->insert( polygon->end(), std::make_pair( (cvf::uint)midPointIndex, true ) );
|
|
|
|
++it;
|
|
|
|
if ( it == polygon->end() ) break;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Based on http://geomalgorithms.com/a01-_area.html
|
|
/// This method returns the polygon normal with length equal to the polygon area.
|
|
/// The components of the normal is thus the size of projected area into each of the main axis planes
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3d GeometryTools::polygonAreaNormal3D( const std::vector<cvf::Vec3d>& polygon )
|
|
{
|
|
size_t pSize = polygon.size();
|
|
switch ( pSize )
|
|
{
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
{
|
|
return cvf::Vec3d::ZERO;
|
|
}
|
|
break;
|
|
case 3:
|
|
{
|
|
return 0.5 * ( ( polygon[1] - polygon[0] ) ^ ( polygon[2] - polygon[0] ) );
|
|
}
|
|
break;
|
|
case 4:
|
|
{
|
|
// Cross product of diagonal = 2*A
|
|
return 0.5 * ( ( polygon[2] - polygon[0] ) ^ ( polygon[3] - polygon[1] ) );
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
/// JJS:
|
|
// This is possibly not the fastest approach with large polygons, where a scaled projections approach would
|
|
// be better, but I suspect this (simpler) approach is faster for small polygons, as long as we do not have
|
|
// the polygon normal up front.
|
|
//
|
|
cvf::Vec3d areaNormal( cvf::Vec3d::ZERO );
|
|
size_t h = ( pSize - 1 ) / 2;
|
|
size_t k = ( pSize % 2 ) ? 0 : pSize - 1;
|
|
|
|
// First quads
|
|
for ( size_t i = 1; i < h; ++i )
|
|
{
|
|
areaNormal += ( ( polygon[2 * i] - polygon[0] ) ^ ( polygon[2 * i + 1] - polygon[2 * i - 1] ) );
|
|
}
|
|
|
|
// Last triangle or quad
|
|
areaNormal += ( ( polygon[2 * h] - polygon[0] ) ^ ( polygon[k] - polygon[2 * h - 1] ) );
|
|
|
|
areaNormal *= 0.5;
|
|
|
|
return areaNormal;
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::Vec3f GeometryTools::polygonAreaNormal3D( const std::vector<cvf::Vec3f>& polygon )
|
|
{
|
|
size_t pSize = polygon.size();
|
|
switch ( pSize )
|
|
{
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
{
|
|
return cvf::Vec3f::ZERO;
|
|
}
|
|
break;
|
|
case 3:
|
|
{
|
|
return 0.5f * ( ( polygon[1] - polygon[0] ) ^ ( polygon[2] - polygon[0] ) );
|
|
}
|
|
break;
|
|
case 4:
|
|
{
|
|
// Cross product of diagonal = 2*A
|
|
return 0.5f * ( ( polygon[2] - polygon[0] ) ^ ( polygon[3] - polygon[1] ) );
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
/// JJS:
|
|
// This is possibly not the fastest approach with large polygons, where a scaled projections approach would
|
|
// be better, but I suspect this (simpler) approach is faster for small polygons, as long as we do not have
|
|
// the polygon normal up front.
|
|
//
|
|
cvf::Vec3f areaNormal( cvf::Vec3f::ZERO );
|
|
size_t h = ( pSize - 1 ) / 2;
|
|
size_t k = ( pSize % 2 ) ? 0 : pSize - 1;
|
|
|
|
// First quads
|
|
for ( size_t i = 1; i < h; ++i )
|
|
{
|
|
areaNormal += ( ( polygon[2 * i] - polygon[0] ) ^ ( polygon[2 * i + 1] - polygon[2 * i - 1] ) );
|
|
}
|
|
|
|
// Last triangle or quad
|
|
areaNormal += ( ( polygon[2 * h] - polygon[0] ) ^ ( polygon[k] - polygon[2 * h - 1] ) );
|
|
|
|
areaNormal *= 0.5;
|
|
|
|
return areaNormal;
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
float GeometryTools::polygonArea( const std::vector<cvf::Vec3f>& polygon )
|
|
{
|
|
auto areaNormal3D = polygonAreaNormal3D( polygon );
|
|
|
|
return areaNormal3D.length();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double GeometryTools::polygonArea( const std::vector<cvf::Vec3d>& polygon )
|
|
{
|
|
auto areaNormal3D = polygonAreaNormal3D( polygon );
|
|
|
|
return areaNormal3D.length();
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EdgeSplitStorage::setVertexCount( size_t size )
|
|
{
|
|
m_edgeSplitMap.resize( size );
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool EdgeSplitStorage::findSplitPoint( size_t edgeP1Index, size_t edgeP2Index, size_t* splitPointIndex )
|
|
{
|
|
canonizeAddress( edgeP1Index, edgeP2Index );
|
|
CVF_ASSERT( edgeP1Index < m_edgeSplitMap.size() );
|
|
|
|
std::map<size_t, size_t>::iterator it;
|
|
|
|
it = m_edgeSplitMap[edgeP1Index].find( edgeP2Index );
|
|
if ( it == m_edgeSplitMap[edgeP1Index].end() ) return false;
|
|
|
|
*splitPointIndex = it->second;
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EdgeSplitStorage::addSplitPoint( size_t edgeP1Index, size_t edgeP2Index, size_t splitPointIndex )
|
|
{
|
|
canonizeAddress( edgeP1Index, edgeP2Index );
|
|
CVF_ASSERT( edgeP1Index < m_edgeSplitMap.size() );
|
|
m_edgeSplitMap[edgeP1Index][edgeP2Index] = splitPointIndex;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EdgeSplitStorage::canonizeAddress( size_t& edgeP1Index, size_t& edgeP2Index )
|
|
{
|
|
if ( edgeP1Index > edgeP2Index )
|
|
{
|
|
size_t tmp;
|
|
tmp = edgeP1Index;
|
|
edgeP1Index = edgeP2Index;
|
|
edgeP2Index = tmp;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
EarClipTesselator::EarClipTesselator()
|
|
: m_X( -1 )
|
|
, m_Y( -1 )
|
|
, m_areaTolerance( 1e-12 )
|
|
, m_nodeCoords( nullptr )
|
|
{
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// \brief Do the main processing/actual triangulation
|
|
/// \param triangleIndices Array that will receive the indices of the triangles resulting from the triangulation
|
|
/// \return true when a tesselation was successully created
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
bool EarClipTesselator::calculateTriangles( std::vector<size_t>* triangleIndices )
|
|
{
|
|
CVF_ASSERT( m_nodeCoords != nullptr );
|
|
CVF_ASSERT( m_X > -1 && m_Y > -1 );
|
|
|
|
size_t numVertices = m_polygonIndices.size();
|
|
|
|
if ( numVertices < 3 ) return false;
|
|
|
|
// We want m_polygonIndices to be a counter-clockwise polygon to make the validation test work
|
|
|
|
if ( calculateProjectedPolygonArea() < 0 )
|
|
{
|
|
m_polygonIndices.reverse();
|
|
}
|
|
|
|
std::list<size_t>::iterator u, v, w;
|
|
|
|
// If we loop two times around polygon without clipping a single triangle we are toast.
|
|
size_t count = 2 * numVertices; // error detection
|
|
|
|
v = m_polygonIndices.end(); // nv - 1;
|
|
--v;
|
|
|
|
while ( numVertices > 2 )
|
|
{
|
|
// if we loop, it is probably a non-simple polygon
|
|
if ( count == 0 )
|
|
{
|
|
// Triangulate: ERROR - probable bad polygon!
|
|
return false;
|
|
}
|
|
--count;
|
|
|
|
// Three consecutive vertices in current polygon, <u,v,w>
|
|
// previous
|
|
u = v;
|
|
if ( u == m_polygonIndices.end() ) u = m_polygonIndices.begin(); // if (nv <= u) u = 0;
|
|
|
|
// new v
|
|
v = u;
|
|
++v; // u + 1;
|
|
if ( v == m_polygonIndices.end() ) v = m_polygonIndices.begin(); // if (nv <= v) v = 0;
|
|
|
|
// next
|
|
w = v;
|
|
++w; // v + 1;
|
|
if ( w == m_polygonIndices.end() ) w = m_polygonIndices.begin(); // if (nv <= w) w = 0;
|
|
|
|
EarClipTesselator::TriangleStatus triStatus = calculateTriangleStatus( u, v, w );
|
|
|
|
if ( triStatus != INVALID_TRIANGLE )
|
|
{
|
|
// Indices of the vertices
|
|
if ( triStatus == VALID_TRIANGLE )
|
|
{
|
|
triangleIndices->push_back( *u );
|
|
triangleIndices->push_back( *v );
|
|
triangleIndices->push_back( *w );
|
|
}
|
|
|
|
// Remove v from remaining polygon
|
|
m_polygonIndices.erase( v );
|
|
v = w;
|
|
numVertices--;
|
|
|
|
// Resets error detection counter
|
|
count = 2 * numVertices;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Is this a valid triangle ? ( No points inside, and points not on a line. )
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
EarClipTesselator::TriangleStatus EarClipTesselator::calculateTriangleStatus( std::list<size_t>::const_iterator u,
|
|
std::list<size_t>::const_iterator v,
|
|
std::list<size_t>::const_iterator w ) const
|
|
{
|
|
CVF_ASSERT( m_X > -1 && m_Y > -1 );
|
|
|
|
cvf::Vec3d A = ( *m_nodeCoords )[*u];
|
|
cvf::Vec3d B = ( *m_nodeCoords )[*v];
|
|
cvf::Vec3d C = ( *m_nodeCoords )[*w];
|
|
|
|
double mainAxisProjectedArea = ( ( B[m_X] - A[m_X] ) * ( C[m_Y] - A[m_Y] ) ) -
|
|
( ( B[m_Y] - A[m_Y] ) * ( C[m_X] - A[m_X] ) );
|
|
if ( -m_areaTolerance > mainAxisProjectedArea )
|
|
{
|
|
// Definite negative triangle
|
|
return INVALID_TRIANGLE;
|
|
}
|
|
else if ( fabs( mainAxisProjectedArea ) < m_areaTolerance )
|
|
{
|
|
return NEAR_ZERO_AREA_TRIANGLE;
|
|
}
|
|
|
|
std::list<size_t>::const_iterator c;
|
|
std::list<size_t>::const_iterator outside;
|
|
for ( c = m_polygonIndices.begin(); c != m_polygonIndices.end(); ++c )
|
|
{
|
|
// The polygon points that actually make up the triangle candidate does not count
|
|
// (but the same points on different positions in the polygon does!
|
|
// Except those one off the triangle, that references the start or end of the triangle)
|
|
|
|
if ( ( c == u ) || ( c == v ) || ( c == w ) ) continue;
|
|
|
|
// Originally the below tests was not included which resulted in missing triangles sometimes
|
|
|
|
outside = w;
|
|
++outside;
|
|
if ( outside == m_polygonIndices.end() ) outside = m_polygonIndices.begin();
|
|
if ( c == outside && *c == *u )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
outside = u;
|
|
if ( outside == m_polygonIndices.begin() ) outside = m_polygonIndices.end();
|
|
--outside;
|
|
if ( c == outside && *c == *w )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
cvf::Vec3d P = ( *m_nodeCoords )[*c];
|
|
|
|
if ( isPointInsideTriangle( A, B, C, P ) ) return INVALID_TRIANGLE;
|
|
}
|
|
|
|
return VALID_TRIANGLE;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Decides if a point P is inside of the triangle defined by A, B, C.
|
|
/// By calculating the "double area" (cross product) of Corner to corner x Corner to point vectors
|
|
/// If cross product is negative, the point is outside
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
bool EarClipTesselator::isPointInsideTriangle( const cvf::Vec3d& A,
|
|
const cvf::Vec3d& B,
|
|
const cvf::Vec3d& C,
|
|
const cvf::Vec3d& P ) const
|
|
{
|
|
CVF_ASSERT( m_X > -1 && m_Y > -1 );
|
|
|
|
double ax = C[m_X] - B[m_X];
|
|
double ay = C[m_Y] - B[m_Y];
|
|
double bx = A[m_X] - C[m_X];
|
|
double by = A[m_Y] - C[m_Y];
|
|
double cx = B[m_X] - A[m_X];
|
|
double cy = B[m_Y] - A[m_Y];
|
|
|
|
double apx = P[m_X] - A[m_X];
|
|
double apy = P[m_Y] - A[m_Y];
|
|
double bpx = P[m_X] - B[m_X];
|
|
double bpy = P[m_Y] - B[m_Y];
|
|
double cpx = P[m_X] - C[m_X];
|
|
double cpy = P[m_Y] - C[m_Y];
|
|
|
|
double aCROSSbp = ax * bpy - ay * bpx;
|
|
double cCROSSap = cx * apy - cy * apx;
|
|
double bCROSScp = bx * cpy - by * cpx;
|
|
double tol = -m_areaTolerance;
|
|
|
|
return ( ( aCROSSbp >= tol ) && ( bCROSScp >= tol ) && ( cCROSSap >= tol ) );
|
|
};
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// Computes area of the currently stored 2D polygon/contour
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
double EarClipTesselator::calculateProjectedPolygonArea() const
|
|
{
|
|
CVF_ASSERT( m_X > -1 && m_Y > -1 );
|
|
|
|
double A = 0;
|
|
|
|
std::list<size_t>::const_iterator p = m_polygonIndices.end();
|
|
--p;
|
|
|
|
std::list<size_t>::const_iterator q = m_polygonIndices.begin();
|
|
while ( q != m_polygonIndices.end() )
|
|
{
|
|
A += ( *m_nodeCoords )[*p][m_X] * ( *m_nodeCoords )[*q][m_Y] -
|
|
( *m_nodeCoords )[*q][m_X] * ( *m_nodeCoords )[*p][m_Y];
|
|
|
|
p = q;
|
|
++q;
|
|
}
|
|
|
|
return A * 0.5;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setNormal( const cvf::Vec3d& polygonNormal )
|
|
{
|
|
int Z = GeometryTools::findClosestAxis( polygonNormal );
|
|
m_X = ( Z + 1 ) % 3;
|
|
m_Y = ( Z + 2 ) % 3;
|
|
m_polygonNormal = polygonNormal;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setPolygonIndices( const std::list<size_t>& polygon )
|
|
{
|
|
m_polygonIndices = polygon;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setPolygonIndices( const std::vector<size_t>& polygon )
|
|
{
|
|
size_t i;
|
|
for ( i = 0; i < polygon.size(); ++i )
|
|
{
|
|
m_polygonIndices.push_back( polygon[i] );
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setMinTriangleArea( double areaTolerance )
|
|
{
|
|
m_areaTolerance = 2 * areaTolerance; // Convert to trapesoidal area
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void EarClipTesselator::setGlobalNodeArray( const cvf::Vec3dArray& nodeCoords )
|
|
{
|
|
m_nodeCoords = &nodeCoords;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
FanEarClipTesselator::FanEarClipTesselator()
|
|
: m_centerNodeIndex( std::numeric_limits<size_t>::max() )
|
|
{
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool FanEarClipTesselator::calculateTriangles( std::vector<size_t>* triangles )
|
|
{
|
|
CVF_ASSERT( m_centerNodeIndex != std::numeric_limits<size_t>::max() );
|
|
CVF_ASSERT( m_nodeCoords != nullptr );
|
|
CVF_ASSERT( m_X > -1 && m_Y > -1 );
|
|
|
|
size_t nv = m_polygonIndices.size();
|
|
|
|
if ( nv < 3 ) return false;
|
|
|
|
// We want m_polygonIndices to be a counter-clockwise polygon to make the validation test work
|
|
|
|
if ( calculateProjectedPolygonArea() < 0 )
|
|
{
|
|
m_polygonIndices.reverse();
|
|
}
|
|
|
|
std::list<size_t>::const_iterator it1;
|
|
std::list<size_t>::const_iterator it2;
|
|
|
|
std::list<std::list<size_t>> restPolygons;
|
|
bool wasPreviousTriangleValid = true;
|
|
|
|
for ( it1 = m_polygonIndices.begin(); it1 != m_polygonIndices.end(); ++it1 )
|
|
{
|
|
it2 = it1;
|
|
++it2;
|
|
|
|
if ( it2 == m_polygonIndices.end() ) it2 = m_polygonIndices.begin();
|
|
|
|
if ( isTriangleValid( *it1, *it2, m_centerNodeIndex ) )
|
|
{
|
|
triangles->push_back( *it1 );
|
|
triangles->push_back( *it2 );
|
|
triangles->push_back( m_centerNodeIndex );
|
|
wasPreviousTriangleValid = true;
|
|
}
|
|
else
|
|
{
|
|
if ( wasPreviousTriangleValid )
|
|
{
|
|
// Create new rest polygon.
|
|
restPolygons.push_back( std::list<size_t>() );
|
|
restPolygons.back().push_back( m_centerNodeIndex );
|
|
restPolygons.back().push_back( *it1 );
|
|
restPolygons.back().push_back( *it2 );
|
|
}
|
|
else
|
|
{
|
|
restPolygons.back().push_back( *it2 );
|
|
}
|
|
}
|
|
}
|
|
|
|
EarClipTesselator triMaker;
|
|
triMaker.setNormal( m_polygonNormal );
|
|
triMaker.setMinTriangleArea( m_areaTolerance );
|
|
triMaker.setGlobalNodeArray( *m_nodeCoords );
|
|
std::list<std::list<size_t>>::iterator rpIt;
|
|
|
|
for ( rpIt = restPolygons.begin(); rpIt != restPolygons.end(); ++rpIt )
|
|
{
|
|
triMaker.setPolygonIndices( *rpIt );
|
|
triMaker.calculateTriangles( triangles );
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
/// This needs to be rewritten because we need to test for crossing edges, not only point inside.
|
|
/// In addition the test for polygon
|
|
//--------------------------------------------------------------------------------------------------
|
|
bool FanEarClipTesselator::isTriangleValid( size_t u, size_t v, size_t w )
|
|
{
|
|
CVF_ASSERT( m_X > -1 && m_Y > -1 );
|
|
|
|
cvf::Vec3d A = ( *m_nodeCoords )[u];
|
|
cvf::Vec3d B = ( *m_nodeCoords )[v];
|
|
cvf::Vec3d C = ( *m_nodeCoords )[w];
|
|
|
|
if ( m_areaTolerance > ( ( ( B[m_X] - A[m_X] ) * ( C[m_Y] - A[m_Y] ) ) - ( ( B[m_Y] - A[m_Y] ) * ( C[m_X] - A[m_X] ) ) ) )
|
|
return false;
|
|
|
|
std::list<size_t>::const_iterator c;
|
|
for ( c = m_polygonIndices.begin(); c != m_polygonIndices.end(); ++c )
|
|
{
|
|
// The polygon points that actually make up the triangle candidate does not count
|
|
// (but the same points on different positions in the polygon does! )
|
|
// Todo so this test below is to accepting !! Bug !!
|
|
if ( ( *c == u ) || ( *c == v ) || ( *c == w ) ) continue;
|
|
|
|
cvf::Vec3d P = ( *m_nodeCoords )[*c];
|
|
|
|
if ( isPointInsideTriangle( A, B, C, P ) ) return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace cvf
|