ResInsight/ApplicationCode/ReservoirDataModel/RigNumberOfFloodedPoreVolumesCalculator.cpp

186 lines
8.4 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigNumberOfFloodedPoreVolumesCalculator.h"
#include "RigMainGrid.h"
#include <string>
#include "RimReservoirCellResultsStorage.h"
#include "RigEclipseCaseData.h"
#include "RimEclipseCase.h"
#include "RiaPorosityModel.h"
#include "RigEclipseCaseData.h"
#include "RigCaseCellResultsData.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigNumberOfFloodedPoreVolumesCalculator::RigNumberOfFloodedPoreVolumesCalculator(RigMainGrid* mainGrid,
RimEclipseCase* caseToApply,
std::vector<std::string> tracerNames )
{
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
RiaDefines::PorosityModelType porosityModel = RiaDefines::MATRIX_MODEL;
RimReservoirCellResultsStorage* gridCellResults = caseToApply->results(porosityModel);
size_t scalarResultIndexPorv = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PORV");
const std::vector<double>* porvResults = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexPorv, 0));
size_t scalarResultIndexFlrWatI = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "FLRWATI+");
size_t scalarResultIndexFlrWatJ = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "FLRWATJ+");
size_t scalarResultIndexFlrWatK = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "FLRWATK+");
std::vector<size_t> scalarResultIndexTracers;
for (std::string tracerName : tracerNames)
{
scalarResultIndexTracers.push_back(gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "FLRWATI+"));
}
std::vector<QDateTime> timeStepDates = caseToApply->timeStepDates();
for (size_t timeStep = 1; timeStep < timeStepDates.size(); timeStep++)
{
const std::vector<double>* flrWatResultI = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlrWatI, timeStep));
const std::vector<double>* flrWatResultJ = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlrWatJ, timeStep));
const std::vector<double>* flrWatResultK = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(scalarResultIndexFlrWatK, timeStep));
size_t totalNumberOfCells = flrWatResultI->size();
std::vector<double> FwI(totalNumberOfCells);
std::vector<double> FwJ(totalNumberOfCells);
std::vector<double> FwK(totalNumberOfCells);
std::vector<double> summedTracerValues(totalNumberOfCells);
//sum all tracers at current timestep
for (size_t tracerIndex : scalarResultIndexTracers)
{
const std::vector<double>* tracerResult = &(eclipseCaseData->results(RiaDefines::MATRIX_MODEL)->cellScalarResults(tracerIndex, timeStep));
for (size_t i = 0; i < summedTracerValues.size(); i++)
{
summedTracerValues[i] += tracerResult->at(i);
}
}
distributeNeighbourCellFlow(mainGrid,
totalNumberOfCells,
summedTracerValues,
flrWatResultI,
FwI,
flrWatResultJ,
FwJ,
flrWatResultK,
FwK);
//TODO: Add NNC contributions
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigNumberOfFloodedPoreVolumesCalculator::distributeNeighbourCellFlow(RigMainGrid* mainGrid,
size_t totalNumberOfCells,
std::vector<double> summedTracerValues,
const std::vector<double>* flrWatResultI,
std::vector<double> &FwI,
const std::vector<double>* flrWatResultJ,
std::vector<double> &FwJ,
const std::vector<double>* flrWatResultK,
std::vector<double> &FwK)
{
for (size_t globalCellIndex = 0; globalCellIndex < totalNumberOfCells; globalCellIndex++)
{
size_t i, j, k;
mainGrid->ijkFromCellIndex(globalCellIndex, &i, &j, &k); //TODO: Generalize grid!!!!
if (i < mainGrid->cellCountI())
{
size_t globalCellIndexPosINeightbour = mainGrid->cellIndexFromIJK(i + 1, j, k);
if (flrWatResultI->at(globalCellIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
FwI[globalCellIndexPosINeightbour] += flrWatResultI->at(globalCellIndex) * summedTracerValues[globalCellIndex];
}
else if (flrWatResultI->at(globalCellIndex) < 0 && i < mainGrid->cellCountI())
{
//Flow into cell globelCellIndex, from cell i+1
FwI[globalCellIndex] += flrWatResultI->at(globalCellIndex) * summedTracerValues[globalCellIndexPosINeightbour];
}
}
}
for (size_t globalCellIndex = 0; globalCellIndex < totalNumberOfCells; globalCellIndex++)
{
size_t i, j, k;
mainGrid->ijkFromCellIndex(globalCellIndex, &i, &j, &k); //TODO: Generalize grid!!!!
if (i < mainGrid->cellCountI())
{
size_t globalCellIndexPosJNeightbour = mainGrid->cellIndexFromIJK(i, j + 1, k);
if (flrWatResultJ->at(globalCellIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
FwJ[globalCellIndexPosJNeightbour] += flrWatResultJ->at(globalCellIndex) * summedTracerValues[globalCellIndex];
}
else if (flrWatResultJ->at(globalCellIndex) < 0 && i < mainGrid->cellCountI())
{
//Flow into cell globelCellIndex, from cell i+1
FwJ[globalCellIndex] += flrWatResultJ->at(globalCellIndex) * summedTracerValues[globalCellIndexPosJNeightbour];
}
}
}
for (size_t globalCellIndex = 0; globalCellIndex < totalNumberOfCells; globalCellIndex++)
{
size_t i, j, k;
mainGrid->ijkFromCellIndex(globalCellIndex, &i, &j, &k); //TODO: Generalize grid!!!!
if (i < mainGrid->cellCountI())
{
size_t globalCellIndexPosKNeightbour = mainGrid->cellIndexFromIJK(i, j, k + 1);
if (flrWatResultK->at(globalCellIndex) > 0)
{
//Flow out of cell globalCellIndex, into cell i+1
FwK[globalCellIndexPosKNeightbour] += flrWatResultK->at(globalCellIndex) * summedTracerValues[globalCellIndex];
}
else if (flrWatResultK->at(globalCellIndex) < 0 && i < mainGrid->cellCountI())
{
//Flow into cell globelCellIndex, from cell i+1
FwK[globalCellIndex] += flrWatResultK->at(globalCellIndex) * summedTracerValues[globalCellIndexPosKNeightbour];
}
}
}
}