mirror of
https://github.com/OPM/ResInsight.git
synced 2025-01-21 05:53:25 -06:00
528 lines
22 KiB
C++
528 lines
22 KiB
C++
/////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2020- Equinor ASA
|
|
//
|
|
// ResInsight is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
|
|
// for more details.
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "RivElementVectorResultPartMgr.h"
|
|
|
|
#include "RimEclipseCase.h"
|
|
#include "RimEclipseView.h"
|
|
#include "RimElementVectorResult.h"
|
|
#include "RimRegularLegendConfig.h"
|
|
|
|
#include "RigActiveCellInfo.h"
|
|
#include "RigCaseCellResultsData.h"
|
|
#include "RigCell.h"
|
|
#include "RigEclipseCaseData.h"
|
|
#include "RigEclipseResultAddress.h"
|
|
#include "RigMainGrid.h"
|
|
#include "RigNNCData.h"
|
|
|
|
#include "cafDisplayCoordTransform.h"
|
|
|
|
#include "cafEffectGenerator.h"
|
|
|
|
#include "cvfDrawableGeo.h"
|
|
#include "cvfGeometryTools.h"
|
|
#include "cvfModelBasicList.h"
|
|
#include "cvfPart.h"
|
|
#include "cvfPrimitiveSetIndexedUInt.h"
|
|
#include "cvfShaderProgram.h"
|
|
#include "cvfStructGrid.h"
|
|
#include "cvfStructGridGeometryGenerator.h"
|
|
|
|
#include <cmath>
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RivElementVectorResultPartMgr::RivElementVectorResultPartMgr( RimEclipseView* reservoirView )
|
|
{
|
|
m_rimReservoirView = reservoirView;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
RivElementVectorResultPartMgr::~RivElementVectorResultPartMgr()
|
|
{
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RivElementVectorResultPartMgr::setTransform( cvf::Transform* scaleTransform )
|
|
{
|
|
m_scaleTransform = scaleTransform;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RivElementVectorResultPartMgr::appendDynamicGeometryPartsToModel( cvf::ModelBasicList* model, size_t timeStepIndex )
|
|
{
|
|
CVF_ASSERT( model );
|
|
|
|
if ( m_rimReservoirView.isNull() ) return;
|
|
|
|
RimEclipseCase* eclipseCase = m_rimReservoirView->eclipseCase();
|
|
if ( !eclipseCase ) return;
|
|
|
|
RigEclipseCaseData* eclipseCaseData = eclipseCase->eclipseCaseData();
|
|
if ( !eclipseCaseData ) return;
|
|
|
|
RimElementVectorResult* result = m_rimReservoirView->elementVectorResult();
|
|
if ( !result ) return;
|
|
|
|
if ( !result->showResult() ) return;
|
|
|
|
cvf::ref<caf::DisplayCoordTransform> displayCordXf = m_rimReservoirView->displayCoordTransform();
|
|
|
|
std::vector<ElementVectorResultVisualization> tensorVisualizations;
|
|
|
|
double characteristicCellSize = eclipseCase->characteristicCellSize();
|
|
float arrowConstantScaling = 10.0 * result->sizeScale() * characteristicCellSize;
|
|
|
|
double maxAbsResult = 1.0;
|
|
{
|
|
double min, max;
|
|
result->mappingRange( min, max );
|
|
if ( min != cvf::UNDEFINED_DOUBLE && max != cvf::UNDEFINED_DOUBLE )
|
|
{
|
|
maxAbsResult = std::max( cvf::Math::abs( max ), cvf::Math::abs( min ) );
|
|
}
|
|
}
|
|
|
|
float arrowScaling = arrowConstantScaling / maxAbsResult;
|
|
|
|
std::vector<RigEclipseResultAddress> resultAddresses;
|
|
std::vector<cvf::StructGridInterface::FaceType> directions;
|
|
RigCaseCellResultsData* resultsData = eclipseCaseData->results( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
{
|
|
std::vector<RigEclipseResultAddress> addresses;
|
|
result->resultAddressesIJK( addresses );
|
|
|
|
for ( size_t fluidIndex = 0; fluidIndex < addresses.size(); fluidIndex += 3 )
|
|
{
|
|
if ( result->showVectorI() )
|
|
{
|
|
if ( fluidIndex == 0 ) directions.push_back( cvf::StructGridInterface::POS_I );
|
|
|
|
auto candidate = addresses[0 + fluidIndex];
|
|
if ( resultsData->hasResultEntry( candidate ) && !resultsData->cellScalarResults( candidate, timeStepIndex ).empty() )
|
|
{
|
|
resultAddresses.push_back( candidate );
|
|
}
|
|
}
|
|
if ( result->showVectorJ() )
|
|
{
|
|
if ( fluidIndex == 0 ) directions.push_back( cvf::StructGridInterface::POS_J );
|
|
auto candidate = addresses[1 + fluidIndex];
|
|
if ( resultsData->hasResultEntry( candidate ) && !resultsData->cellScalarResults( candidate, timeStepIndex ).empty() )
|
|
{
|
|
resultAddresses.push_back( candidate );
|
|
}
|
|
}
|
|
if ( result->showVectorK() )
|
|
{
|
|
if ( fluidIndex == 0 ) directions.push_back( cvf::StructGridInterface::POS_K );
|
|
auto candidate = addresses[2 + fluidIndex];
|
|
if ( resultsData->hasResultEntry( candidate ) && !resultsData->cellScalarResults( candidate, timeStepIndex ).empty() )
|
|
{
|
|
resultAddresses.push_back( candidate );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
|
|
|
|
const std::vector<RigCell>& cells = eclipseCase->mainGrid()->globalCellArray();
|
|
|
|
auto getFaceCenterAndNormal = [cells, arrowScaling, displayCordXf]( size_t globalCellIdx,
|
|
cvf::StructGridInterface::FaceType faceType,
|
|
cvf::Vec3d& faceCenter,
|
|
cvf::Vec3d& faceNormal )
|
|
{
|
|
faceCenter = displayCordXf->transformToDisplayCoord( cells[globalCellIdx].faceCenter( faceType ) );
|
|
cvf::Vec3d cellCenter = displayCordXf->transformToDisplayCoord( cells[globalCellIdx].center() );
|
|
faceNormal = ( faceCenter - cellCenter ).getNormalized() * arrowScaling;
|
|
};
|
|
|
|
if ( !resultAddresses.empty() && !directions.empty() )
|
|
{
|
|
#pragma omp parallel for
|
|
for ( int gcIdx = 0; gcIdx < static_cast<int>( cells.size() ); ++gcIdx )
|
|
{
|
|
if ( !cells[gcIdx].isInvalid() && activeCellInfo->isActive( gcIdx ) )
|
|
{
|
|
size_t resultIdx = activeCellInfo->cellResultIndex( gcIdx );
|
|
if ( result->vectorView() == RimElementVectorResult::VectorView::PER_FACE )
|
|
{
|
|
for ( int dir = 0; dir < static_cast<int>( directions.size() ); dir++ )
|
|
{
|
|
double resultValue = 0.0;
|
|
for ( size_t flIdx = dir; flIdx < resultAddresses.size(); flIdx += directions.size() )
|
|
{
|
|
resultValue += resultsData->cellScalarResults( resultAddresses[flIdx], timeStepIndex ).at( resultIdx );
|
|
}
|
|
|
|
if ( std::abs( resultValue ) >= result->threshold() )
|
|
{
|
|
cvf::Vec3d faceCenter;
|
|
cvf::Vec3d faceNormal;
|
|
getFaceCenterAndNormal( static_cast<size_t>( gcIdx ), directions[dir], faceCenter, faceNormal );
|
|
faceNormal *= std::abs( resultValue );
|
|
|
|
bool centerArrow = false;
|
|
if ( result->vectorSuraceCrossingLocation() == RimElementVectorResult::VectorSurfaceCrossingLocation::VECTOR_CENTER &&
|
|
result->vectorView() == RimElementVectorResult::VectorView::PER_FACE )
|
|
{
|
|
centerArrow = true;
|
|
}
|
|
|
|
#pragma omp critical( critical_section_RivElementVectorResultPartMgr_add_1 )
|
|
tensorVisualizations.push_back( ElementVectorResultVisualization( faceCenter,
|
|
faceNormal,
|
|
resultValue,
|
|
std::cbrt( cells[gcIdx].volume() / 3.0 ),
|
|
centerArrow ) );
|
|
}
|
|
}
|
|
}
|
|
else if ( result->vectorView() == RimElementVectorResult::VectorView::CELL_CENTER_TOTAL )
|
|
{
|
|
cvf::Vec3d aggregatedVector;
|
|
cvf::Vec3d aggregatedResult;
|
|
for ( int dir = 0; dir < static_cast<int>( directions.size() ); dir++ )
|
|
{
|
|
double resultValue = 0.0;
|
|
for ( size_t flIdx = dir; flIdx < resultAddresses.size(); flIdx += directions.size() )
|
|
{
|
|
resultValue += resultsData->cellScalarResults( resultAddresses[flIdx], timeStepIndex ).at( resultIdx );
|
|
}
|
|
|
|
cvf::Vec3d faceCenter;
|
|
cvf::Vec3d faceNormal;
|
|
cvf::Vec3d faceNormalScaled;
|
|
getFaceCenterAndNormal( gcIdx, directions[dir], faceCenter, faceNormal );
|
|
faceNormalScaled = faceNormal * resultValue;
|
|
aggregatedVector += faceNormalScaled;
|
|
aggregatedResult += faceNormal.getNormalized() * resultValue;
|
|
}
|
|
if ( aggregatedResult.length() >= result->threshold() )
|
|
{
|
|
bool centerArrow = false;
|
|
if ( result->vectorSuraceCrossingLocation() == RimElementVectorResult::VectorSurfaceCrossingLocation::VECTOR_CENTER )
|
|
{
|
|
centerArrow = true;
|
|
}
|
|
|
|
#pragma omp critical( critical_section_RivElementVectorResultPartMgr_add_2 )
|
|
tensorVisualizations.push_back(
|
|
ElementVectorResultVisualization( displayCordXf->transformToDisplayCoord( cells[gcIdx].center() ),
|
|
aggregatedVector,
|
|
aggregatedResult.length(),
|
|
std::cbrt( cells[gcIdx].volume() / 3.0 ),
|
|
centerArrow ) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( result->showNncData() )
|
|
{
|
|
RigNNCData* nncData = eclipseCaseData->mainGrid()->nncData();
|
|
nncData->buildPolygonsForEclipseConnections();
|
|
|
|
std::vector<const std::vector<std::vector<double>>*> nncResultVals;
|
|
std::vector<RigEclipseResultAddress> combinedAddresses;
|
|
result->resultAddressesCombined( combinedAddresses );
|
|
|
|
for ( auto candidate : combinedAddresses )
|
|
{
|
|
if ( candidate.resultCatType() == RiaDefines::ResultCatType::DYNAMIC_NATIVE )
|
|
{
|
|
if ( nncData->hasScalarValues( candidate ) )
|
|
{
|
|
nncResultVals.push_back( nncData->dynamicConnectionScalarResult( candidate ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel for
|
|
for ( int nIdx = 0; nIdx < static_cast<int>( nncData->eclipseConnectionCount() ); ++nIdx )
|
|
{
|
|
const RigConnection& conn = nncData->availableConnections()[nIdx];
|
|
if ( !conn.polygon().empty() )
|
|
{
|
|
double resultValue = 0.0;
|
|
for ( size_t flIdx = 0; flIdx < nncResultVals.size(); flIdx++ )
|
|
{
|
|
if ( nIdx < static_cast<int>( nncResultVals.at( flIdx )->at( timeStepIndex ).size() ) )
|
|
{
|
|
resultValue += nncResultVals.at( flIdx )->at( timeStepIndex )[nIdx];
|
|
}
|
|
}
|
|
|
|
cvf::Vec3d connCenter = static_cast<cvf::Vec3d>( cvf::GeometryTools::computePolygonCenter<cvf::Vec3f>( conn.polygon() ) );
|
|
|
|
cvf::Vec3d faceCenter;
|
|
cvf::Vec3d connNormal;
|
|
getFaceCenterAndNormal( conn.c1GlobIdx(), conn.face(), faceCenter, connNormal );
|
|
connNormal *= std::abs( resultValue );
|
|
|
|
if ( std::abs( resultValue ) >= result->threshold() )
|
|
{
|
|
bool centerArrow = false;
|
|
if ( result->vectorView() == RimElementVectorResult::VectorView::CELL_CENTER_TOTAL )
|
|
{
|
|
centerArrow = true;
|
|
}
|
|
else if ( result->vectorView() == RimElementVectorResult::VectorView::PER_FACE )
|
|
{
|
|
if ( result->vectorSuraceCrossingLocation() == RimElementVectorResult::VectorSurfaceCrossingLocation::VECTOR_CENTER )
|
|
centerArrow = true;
|
|
}
|
|
|
|
#pragma omp critical( critical_section_RivElementVectorResultPartMgr_add_nnc )
|
|
tensorVisualizations.push_back( ElementVectorResultVisualization( displayCordXf->transformToDisplayCoord( connCenter ),
|
|
connNormal,
|
|
resultValue,
|
|
std::cbrt( cells[conn.c1GlobIdx()].volume() / 3.0 ),
|
|
centerArrow ) );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( !tensorVisualizations.empty() )
|
|
{
|
|
cvf::ref<cvf::Part> partIdx = createPart( *result, tensorVisualizations );
|
|
partIdx->updateBoundingBox();
|
|
model->addPart( partIdx.p() );
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
cvf::ref<cvf::Part> RivElementVectorResultPartMgr::createPart( const RimElementVectorResult& result,
|
|
const std::vector<ElementVectorResultVisualization>& tensorVisualizations ) const
|
|
{
|
|
std::vector<uint> shaftIndices;
|
|
shaftIndices.reserve( tensorVisualizations.size() * 2 );
|
|
|
|
std::vector<uint> headIndices;
|
|
headIndices.reserve( tensorVisualizations.size() * 6 );
|
|
|
|
std::vector<cvf::Vec3f> vertices;
|
|
vertices.reserve( tensorVisualizations.size() * 7 );
|
|
|
|
uint counter = 0;
|
|
for ( const ElementVectorResultVisualization& tensor : tensorVisualizations )
|
|
{
|
|
for ( const cvf::Vec3f& vertex : createArrowVertices( tensor ) )
|
|
{
|
|
vertices.push_back( vertex );
|
|
}
|
|
|
|
for ( const uint& index : createArrowShaftIndices( counter ) )
|
|
{
|
|
shaftIndices.push_back( index );
|
|
}
|
|
|
|
for ( const uint& index : createArrowHeadIndices( counter ) )
|
|
{
|
|
headIndices.push_back( index );
|
|
}
|
|
|
|
counter += 7;
|
|
}
|
|
|
|
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUIntShaft = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_LINES );
|
|
cvf::ref<cvf::UIntArray> indexArrayShaft = new cvf::UIntArray( shaftIndices );
|
|
|
|
cvf::ref<cvf::PrimitiveSetIndexedUInt> indexedUIntHead = new cvf::PrimitiveSetIndexedUInt( cvf::PrimitiveType::PT_TRIANGLES );
|
|
cvf::ref<cvf::UIntArray> indexArrayHead = new cvf::UIntArray( headIndices );
|
|
|
|
cvf::ref<cvf::DrawableGeo> drawable = new cvf::DrawableGeo();
|
|
|
|
indexedUIntShaft->setIndices( indexArrayShaft.p() );
|
|
drawable->addPrimitiveSet( indexedUIntShaft.p() );
|
|
|
|
indexedUIntHead->setIndices( indexArrayHead.p() );
|
|
drawable->addPrimitiveSet( indexedUIntHead.p() );
|
|
|
|
cvf::ref<cvf::Vec3fArray> vertexArray = new cvf::Vec3fArray( vertices );
|
|
drawable->setVertexArray( vertexArray.p() );
|
|
|
|
cvf::ref<cvf::Vec2fArray> lineTexCoords = const_cast<cvf::Vec2fArray*>( drawable->textureCoordArray() );
|
|
|
|
if ( lineTexCoords.isNull() )
|
|
{
|
|
lineTexCoords = new cvf::Vec2fArray;
|
|
}
|
|
|
|
const cvf::ScalarMapper* activeScalerMapper = nullptr;
|
|
|
|
cvf::ref<cvf::Effect> effect;
|
|
|
|
auto vectorColors = result.vectorColors();
|
|
if ( vectorColors == RimElementVectorResult::TensorColors::RESULT_COLORS )
|
|
{
|
|
activeScalerMapper = result.legendConfig()->scalarMapper();
|
|
createResultColorTextureCoords( lineTexCoords.p(), tensorVisualizations, activeScalerMapper );
|
|
|
|
caf::ScalarMapperMeshEffectGenerator meshEffGen( activeScalerMapper );
|
|
effect = meshEffGen.generateCachedEffect();
|
|
}
|
|
else
|
|
{
|
|
caf::SurfaceEffectGenerator surfaceGen( result.getUniformVectorColor(), caf::PO_1 );
|
|
surfaceGen.enableLighting( !m_rimReservoirView->isLightingDisabled() );
|
|
effect = surfaceGen.generateCachedEffect();
|
|
}
|
|
|
|
drawable->setTextureCoordArray( lineTexCoords.p() );
|
|
|
|
cvf::ref<cvf::Part> part = new cvf::Part;
|
|
part->setName( "RivElementVectorResultPartMgr::createPart" );
|
|
|
|
part->setDrawable( drawable.p() );
|
|
part->setEffect( effect.p() );
|
|
|
|
return part;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
void RivElementVectorResultPartMgr::createResultColorTextureCoords( cvf::Vec2fArray* textureCoords,
|
|
const std::vector<ElementVectorResultVisualization>& elementVectorResultVisualizations,
|
|
const cvf::ScalarMapper* mapper )
|
|
{
|
|
CVF_ASSERT( textureCoords );
|
|
CVF_ASSERT( mapper );
|
|
|
|
size_t vertexCount = elementVectorResultVisualizations.size() * 7;
|
|
if ( textureCoords->size() != vertexCount ) textureCoords->reserve( vertexCount );
|
|
|
|
for ( auto& evrViz : elementVectorResultVisualizations )
|
|
{
|
|
for ( size_t vxIdx = 0; vxIdx < 7; ++vxIdx )
|
|
{
|
|
cvf::Vec2f texCoord = mapper->mapToTextureCoord( std::abs( evrViz.result ) );
|
|
textureCoords->add( texCoord );
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::array<cvf::Vec3f, 7> RivElementVectorResultPartMgr::createArrowVertices( const ElementVectorResultVisualization& evrViz ) const
|
|
{
|
|
std::array<cvf::Vec3f, 7> vertices;
|
|
|
|
RimElementVectorResult* result = m_rimReservoirView->elementVectorResult();
|
|
if ( !result ) return vertices;
|
|
|
|
cvf::Vec3f headTop = evrViz.faceCenter + evrViz.faceNormal;
|
|
cvf::Vec3f shaftStart = evrViz.faceCenter;
|
|
if ( evrViz.centerArrow )
|
|
{
|
|
headTop = evrViz.faceCenter + evrViz.faceNormal / 2.0;
|
|
shaftStart = evrViz.faceCenter - evrViz.faceNormal / 2.0;
|
|
}
|
|
|
|
// Flip arrow for negative results and if the vector is not aggregated (in which case we do not have any negative
|
|
// result)
|
|
if ( evrViz.result < 0 )
|
|
{
|
|
std::swap( headTop, shaftStart );
|
|
}
|
|
|
|
float headLength = std::min<float>( evrViz.approximateCellLength / 3.0f, ( headTop - shaftStart ).length() / 2.0 );
|
|
|
|
// A fixed size is preferred here
|
|
cvf::Vec3f headBottom = headTop - ( headTop - shaftStart ).getNormalized() * headLength;
|
|
|
|
float arrowWidth = headLength / 2.0f;
|
|
|
|
cvf::Vec3f headBottomDirection1 = evrViz.faceNormal ^ evrViz.faceCenter;
|
|
cvf::Vec3f headBottomDirection2 = headBottomDirection1 ^ evrViz.faceNormal;
|
|
cvf::Vec3f arrowBottomSegment1 = headBottomDirection1.getNormalized() * arrowWidth;
|
|
cvf::Vec3f arrowBottomSegment2 = headBottomDirection2.getNormalized() * arrowWidth;
|
|
|
|
vertices[0] = shaftStart;
|
|
vertices[1] = headBottom;
|
|
vertices[2] = headBottom + arrowBottomSegment1;
|
|
vertices[3] = headBottom - arrowBottomSegment1;
|
|
vertices[4] = headTop;
|
|
vertices[5] = headBottom + arrowBottomSegment2;
|
|
vertices[6] = headBottom - arrowBottomSegment2;
|
|
|
|
return vertices;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::array<uint, 2> RivElementVectorResultPartMgr::createArrowShaftIndices( uint startIndex ) const
|
|
{
|
|
std::array<uint, 2> indices;
|
|
|
|
indices[0] = startIndex;
|
|
indices[1] = startIndex + 1;
|
|
|
|
return indices;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
std::array<uint, 6> RivElementVectorResultPartMgr::createArrowHeadIndices( uint startIndex ) const
|
|
{
|
|
std::array<uint, 6> indices;
|
|
|
|
indices[0] = startIndex + 2;
|
|
indices[1] = startIndex + 3;
|
|
indices[2] = startIndex + 4;
|
|
|
|
indices[3] = startIndex + 5;
|
|
indices[4] = startIndex + 6;
|
|
indices[5] = startIndex + 4;
|
|
return indices;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------------------------
|
|
///
|
|
//--------------------------------------------------------------------------------------------------
|
|
double RivElementVectorResultPartMgr::scaleLogarithmically( double value ) const
|
|
{
|
|
// If values are smaller than one, the logarithm would return
|
|
// increasing negative values the smaller the number is. However, small
|
|
// numbers shall remain small and not be scaled up. In order to achieve this,
|
|
// add 1.0 to small values in order to still obtain small positive numbers after scaling.
|
|
if ( value <= 1.0 )
|
|
{
|
|
value += 1.0;
|
|
}
|
|
return std::log10( value );
|
|
}
|