ResInsight/ApplicationCode/ReservoirDataModel/RigEclipseToStimPlanCellTransmissibilityCalculator.cpp

302 lines
16 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017 Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseToStimPlanCellTransmissibilityCalculator.h"
#include "RigStimPlanFracTemplateCell.h"
#include "RigResultAccessorFactory.h"
#include "RigEclipseCaseData.h"
#include "RigActiveCellInfo.h"
#include "RigCellGeometryTools.h"
#include "RigMainGrid.h"
#include "RimEclipseCase.h"
#include "RimReservoirCellResultsStorage.h"
#include "cvfGeometryTools.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseToStimPlanCellTransmissibilityCalculator::RigEclipseToStimPlanCellTransmissibilityCalculator(const RimEclipseCase* caseToApply,
cvf::Mat4f fractureTransform,
double skinFactor,
double cDarcy,
const RigStimPlanFracTemplateCell& stimPlanCell)
: m_case(caseToApply),
m_fractureTransform(fractureTransform),
m_fractureSkinFactor(skinFactor),
m_cDarcy(cDarcy),
m_stimPlanCell(stimPlanCell)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<size_t>& RigEclipseToStimPlanCellTransmissibilityCalculator::globalIndeciesToContributingEclipseCells()
{
if (m_globalIndeciesToContributingEclipseCells.size() < 1)
{
calculateStimPlanCellsMatrixTransmissibility();
}
return m_globalIndeciesToContributingEclipseCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const std::vector<double>& RigEclipseToStimPlanCellTransmissibilityCalculator::contributingEclipseCellTransmissibilities()
{
if (m_globalIndeciesToContributingEclipseCells.size() < 1)
{
calculateStimPlanCellsMatrixTransmissibility();
}
return m_contributingEclipseCellTransmissibilities;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseToStimPlanCellTransmissibilityCalculator::calculateStimPlanCellsMatrixTransmissibility()
{
// Not calculating flow into fracture if stimPlan cell cond value is 0 (assumed to be outside the fracture):
if (m_stimPlanCell.getConductivtyValue() < 1e-7) return;
const RigEclipseCaseData* eclipseCaseData = m_case->eclipseCaseData();
RifReaderInterface::PorosityModelResultType porosityModel = RifReaderInterface::MATRIX_RESULTS;
RimReservoirCellResultsStorage* gridCellResults = m_case->results(porosityModel);
size_t scalarSetIndex;
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DX");
cvf::ref<RigResultAccessor> dataAccessObjectDx = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "DX"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DY");
cvf::ref<RigResultAccessor> dataAccessObjectDy = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "DY"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "DZ");
cvf::ref<RigResultAccessor> dataAccessObjectDz = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "DZ"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "PERMX");
cvf::ref<RigResultAccessor> dataAccessObjectPermX = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "PERMX"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "PERMY");
cvf::ref<RigResultAccessor> dataAccessObjectPermY = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "PERMY"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "PERMZ");
cvf::ref<RigResultAccessor> dataAccessObjectPermZ = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "PERMZ"); //assuming 0 time step and main grid (so grid index =0)
scalarSetIndex = gridCellResults->findOrLoadScalarResult(RimDefines::STATIC_NATIVE, "NTG");
cvf::ref<RigResultAccessor> dataAccessObjectNTG = RigResultAccessorFactory::createFromUiResultName(eclipseCaseData, 0, porosityModel, 0, "NTG"); //assuming 0 time step and main grid (so grid index =0)
const RigActiveCellInfo* activeCellInfo = eclipseCaseData->activeCellInfo(porosityModel);
std::vector<cvf::Vec3d> stimPlanPolygonTransformed;
for (cvf::Vec3d v : m_stimPlanCell.getPolygon())
{
cvf::Vec3f stimPlanPolygonNode = static_cast<cvf::Vec3f>(v);
stimPlanPolygonNode.transformPoint(m_fractureTransform);
stimPlanPolygonTransformed.push_back(static_cast<cvf::Vec3d>(stimPlanPolygonNode));
}
std::vector<size_t> fracCells = getPotentiallyFracturedCellsForPolygon(stimPlanPolygonTransformed);
for (size_t fracCell : fracCells)
{
bool cellIsActive = activeCellInfo->isActive(fracCell);
if (!cellIsActive) continue;
double permX = dataAccessObjectPermX->cellScalarGlobIdx(fracCell);
double permY = dataAccessObjectPermY->cellScalarGlobIdx(fracCell);
double permZ = dataAccessObjectPermZ->cellScalarGlobIdx(fracCell);
double dx = dataAccessObjectDx->cellScalarGlobIdx(fracCell);
double dy = dataAccessObjectDy->cellScalarGlobIdx(fracCell);
double dz = dataAccessObjectDz->cellScalarGlobIdx(fracCell);
double NTG = dataAccessObjectNTG->cellScalarGlobIdx(fracCell);
cvf::Vec3d localX;
cvf::Vec3d localY;
cvf::Vec3d localZ;
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
bool isPlanIntersected = planeCellIntersectionPolygons(fracCell, planeCellPolygons, localX, localY, localZ);
if (!isPlanIntersected || planeCellPolygons.size() == 0) continue;
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon already is located)
cvf::Mat4f invertedTransMatrix = m_fractureTransform.getInverted();
for (std::vector<cvf::Vec3d> & planeCellPolygon : planeCellPolygons)
{
for (cvf::Vec3d& v : planeCellPolygon)
{
v.transformPoint(static_cast<cvf::Mat4d>(invertedTransMatrix));
}
}
cvf::Vec3d localZinFracPlane;
localZinFracPlane = localZ;
localZinFracPlane.transformVector(static_cast<cvf::Mat4d>(invertedTransMatrix));
cvf::Vec3d directionOfLength = cvf::Vec3d::ZERO;
directionOfLength.cross(localZinFracPlane, cvf::Vec3d(0, 0, 1));
directionOfLength.normalize();
std::vector<std::vector<cvf::Vec3d> > polygonsForStimPlanCellInEclipseCell;
cvf::Vec3d areaVector;
std::vector<cvf::Vec3d> stimPlanPolygon = m_stimPlanCell.getPolygon();
for (std::vector<cvf::Vec3d> planeCellPolygon : planeCellPolygons)
{
std::vector<std::vector<cvf::Vec3d> >clippedPolygons = RigCellGeometryTools::clipPolygons(planeCellPolygon, stimPlanPolygon);
for (std::vector<cvf::Vec3d> clippedPolygon : clippedPolygons)
{
polygonsForStimPlanCellInEclipseCell.push_back(clippedPolygon);
}
}
if (polygonsForStimPlanCellInEclipseCell.size() == 0) continue;
double area;
std::vector<double> areaOfFractureParts;
double length;
std::vector<double> lengthXareaOfFractureParts;
double Ax = 0.0, Ay = 0.0, Az = 0.0;
for (std::vector<cvf::Vec3d> fracturePartPolygon : polygonsForStimPlanCellInEclipseCell)
{
areaVector = cvf::GeometryTools::polygonAreaNormal3D(fracturePartPolygon);
area = areaVector.length();
areaOfFractureParts.push_back(area);
//TODO: the l in the sl/pi term in the denominator of the Tmj expression should be the length of the full Eclipse cell
//In the current form the implementation gives correct result only if s=0 (fracture templte skin factor).
length = RigCellGeometryTools::polygonAreaWeightedLength(directionOfLength, fracturePartPolygon);
lengthXareaOfFractureParts.push_back(length * area);
cvf::Plane fracturePlane;
bool isCellIntersected = false;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m_fractureTransform.translation()),
static_cast<cvf::Vec3d>(m_fractureTransform.col(2)));
Ax += abs(area*(fracturePlane.normal().dot(localY)));
Ay += abs(area*(fracturePlane.normal().dot(localX)));
Az += abs(area*(fracturePlane.normal().dot(localZ)));
}
double fractureArea = 0.0;
for (double area : areaOfFractureParts) fractureArea += area;
double totalAreaXLength = 0.0;
for (double lengtXarea : lengthXareaOfFractureParts) totalAreaXLength += lengtXarea;
double fractureAreaWeightedlength = totalAreaXLength / fractureArea;
double transmissibility_X = calculateMatrixTransmissibility(permY, NTG, Ay, dx, m_fractureSkinFactor, fractureAreaWeightedlength);
double transmissibility_Y = calculateMatrixTransmissibility(permX, NTG, Ax, dy, m_fractureSkinFactor, fractureAreaWeightedlength);
double transmissibility_Z = calculateMatrixTransmissibility(permZ, 1.0, Az, dz, m_fractureSkinFactor, fractureAreaWeightedlength);
double transmissibility = sqrt(transmissibility_X * transmissibility_X
+ transmissibility_Y * transmissibility_Y
+ transmissibility_Z * transmissibility_Z);
m_globalIndeciesToContributingEclipseCells.push_back(fracCell);
m_contributingEclipseCellTransmissibilities.push_back(transmissibility);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<size_t> RigEclipseToStimPlanCellTransmissibilityCalculator::getPotentiallyFracturedCellsForPolygon(std::vector<cvf::Vec3d> polygon)
{
std::vector<size_t> cellIndices;
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
if (!mainGrid) return cellIndices;
cvf::BoundingBox polygonBBox;
for (cvf::Vec3d nodeCoord : polygon) polygonBBox.add(nodeCoord);
mainGrid->findIntersectingCells(polygonBBox, &cellIndices);
return cellIndices;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigEclipseToStimPlanCellTransmissibilityCalculator::planeCellIntersectionPolygons(size_t cellindex,
std::vector<std::vector<cvf::Vec3d> > & polygons,
cvf::Vec3d & localX,
cvf::Vec3d & localY,
cvf::Vec3d & localZ)
{
cvf::Plane fracturePlane;
bool isCellIntersected = false;
fracturePlane.setFromPointAndNormal(static_cast<cvf::Vec3d>(m_fractureTransform.translation()),
static_cast<cvf::Vec3d>(m_fractureTransform.col(2)));
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
if (!mainGrid) return false;
RigCell cell = mainGrid->globalCellArray()[cellindex];
if (cell.isInvalid()) return mainGrid;
//Copied (and adapted) from RigEclipseWellLogExtractor
cvf::Vec3d hexCorners[8];
const std::vector<cvf::Vec3d>& nodeCoords = mainGrid->nodes();
const caf::SizeTArray8& cornerIndices = cell.cornerIndices();
hexCorners[0] = nodeCoords[cornerIndices[0]];
hexCorners[1] = nodeCoords[cornerIndices[1]];
hexCorners[2] = nodeCoords[cornerIndices[2]];
hexCorners[3] = nodeCoords[cornerIndices[3]];
hexCorners[4] = nodeCoords[cornerIndices[4]];
hexCorners[5] = nodeCoords[cornerIndices[5]];
hexCorners[6] = nodeCoords[cornerIndices[6]];
hexCorners[7] = nodeCoords[cornerIndices[7]];
//Find line-segments where cell and fracture plane intersects
std::list<std::pair<cvf::Vec3d, cvf::Vec3d > > intersectionLineSegments;
isCellIntersected = RigCellGeometryTools::planeHexCellIntersection(hexCorners, fracturePlane, intersectionLineSegments);
RigCellGeometryTools::createPolygonFromLineSegments(intersectionLineSegments, polygons);
RigCellGeometryTools::findCellLocalXYZ(hexCorners, localX, localY, localZ);
return isCellIntersected;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigEclipseToStimPlanCellTransmissibilityCalculator::calculateMatrixTransmissibility(double perm,
double NTG,
double A,
double cellSizeLength,
double skinfactor,
double fractureAreaWeightedlength)
{
double transmissibility;
double slDivPi = (skinfactor * fractureAreaWeightedlength) / cvf::PI_D;
transmissibility = 8 * m_cDarcy * (perm * NTG) * A / (cellSizeLength + slDivPi);
return transmissibility;
}