ResInsight/ApplicationLibCode/ResultStatisticsCache/RigStatisticsMath.cpp
Magne Sjaastad 952e766c2f
Update clang-format.yml (#10068)
* Update to clang-format-15
Removed two custom .clang-format files in subfolders of AppFwk

* Fixes by clang-format
2023-04-13 07:05:53 +02:00

369 lines
13 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigStatisticsMath.h"
#include "cvfMath.h"
#include <algorithm>
#include <cassert>
#include <cmath>
//--------------------------------------------------------------------------------------------------
/// A function to do basic statistical calculations
//--------------------------------------------------------------------------------------------------
void RigStatisticsMath::calculateBasicStatistics( const std::vector<double>& values,
double* min,
double* max,
double* sum,
double* range,
double* mean,
double* dev )
{
double m_min( HUGE_VAL );
double m_max( -HUGE_VAL );
double m_mean( HUGE_VAL );
double m_dev( HUGE_VAL );
double m_sum = 0.0;
double sumSquared = 0.0;
size_t validValueCount = 0;
for ( size_t i = 0; i < values.size(); i++ )
{
double val = values[i];
if ( RiaStatisticsTools::isInvalidNumber<double>( val ) ) continue;
validValueCount++;
if ( val < m_min ) m_min = val;
if ( val > m_max ) m_max = val;
m_sum += val;
sumSquared += ( val * val );
}
if ( validValueCount > 0 )
{
m_mean = m_sum / validValueCount;
// http://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
// Running standard deviation
double s0 = static_cast<double>( validValueCount );
double s1 = m_sum;
double s2 = sumSquared;
m_dev = sqrt( ( s0 * s2 ) - ( s1 * s1 ) ) / s0;
}
if ( min ) *min = m_min;
if ( max ) *max = m_max;
if ( sum ) *sum = m_sum;
if ( range ) *range = m_max - m_min;
if ( mean ) *mean = m_mean;
if ( dev ) *dev = m_dev;
}
//--------------------------------------------------------------------------------------------------
/// Algorithm:
/// https://en.wikipedia.org/wiki/Percentile#Third_variant,_'%22%60UNIQ--postMath-00000052-QINU%60%22'
//--------------------------------------------------------------------------------------------------
void RigStatisticsMath::calculateStatisticsCurves( const std::vector<double>& values,
double* p10,
double* p50,
double* p90,
double* mean,
PercentileStyle percentileStyle )
{
CVF_ASSERT( p10 && p50 && p90 && mean );
if ( values.empty() ) return;
enum PValue
{
P10,
P50,
P90
};
std::vector<double> sortedValues = values;
sortedValues.erase( std::remove_if( sortedValues.begin(),
sortedValues.end(),
[]( double x ) { return !RiaStatisticsTools::isValidNumber( x ); } ),
sortedValues.end() );
std::sort( sortedValues.begin(), sortedValues.end() );
double valueSum = std::accumulate( sortedValues.begin(), sortedValues.end(), 0.0 );
int valueCount = (int)sortedValues.size();
double percentiles[] = { 0.1, 0.5, 0.9 };
double pValues[] = { HUGE_VAL, HUGE_VAL, HUGE_VAL };
for ( int i = P10; i <= P90; i++ )
{
// Check valid params
if ( ( percentiles[i] < 1.0 / ( (double)valueCount + 1 ) ) || ( percentiles[i] > (double)valueCount / ( (double)valueCount + 1 ) ) )
continue;
double rank = percentiles[i] * ( valueCount + 1 ) - 1;
double rankRem;
double rankFrac = std::modf( rank, &rankRem );
int rankInt = static_cast<int>( rankRem );
if ( rankInt < valueCount - 1 )
{
pValues[i] = sortedValues[rankInt] + rankFrac * ( sortedValues[rankInt + 1] - sortedValues[rankInt] );
}
else
{
pValues[i] = sortedValues.back();
}
}
*p50 = pValues[P50];
if ( percentileStyle == PercentileStyle::REGULAR )
{
*p10 = pValues[P10];
*p90 = pValues[P90];
}
else
{
CVF_ASSERT( percentileStyle == PercentileStyle::SWITCHED );
*p10 = pValues[P90];
*p90 = pValues[P10];
}
*mean = valueSum / valueCount;
}
//--------------------------------------------------------------------------------------------------
/// Calculate the percentiles of /a inputValues at the pValPosition percentages using the "Nearest Rank"
/// method. This method treats HUGE_VAL as "undefined" values, and ignores these. Will return HUGE_VAL if
/// the inputValues does not contain any valid values
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStatisticsMath::calculateNearestRankPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions,
RigStatisticsMath::PercentileStyle percentileStyle )
{
std::vector<double> sortedValues;
sortedValues.reserve( inputValues.size() );
for ( size_t i = 0; i < inputValues.size(); ++i )
{
if ( RiaStatisticsTools::isValidNumber<double>( inputValues[i] ) )
{
sortedValues.push_back( inputValues[i] );
}
}
std::sort( sortedValues.begin(), sortedValues.end() );
std::vector<double> percentiles( pValPositions.size(), HUGE_VAL );
if ( sortedValues.size() )
{
for ( size_t i = 0; i < pValPositions.size(); ++i )
{
double pVal = HUGE_VAL;
double pValPosition = cvf::Math::abs( pValPositions[i] ) / 100;
if ( percentileStyle == RigStatisticsMath::PercentileStyle::SWITCHED ) pValPosition = 1.0 - pValPosition;
size_t pValIndex = static_cast<size_t>( sortedValues.size() * pValPosition );
if ( pValIndex >= sortedValues.size() ) pValIndex = sortedValues.size() - 1;
pVal = sortedValues[pValIndex];
percentiles[i] = pVal;
}
}
return percentiles;
};
//--------------------------------------------------------------------------------------------------
/// Calculate the percentiles of /a inputValues at the pValPosition percentages by interpolating input values.
/// This method treats HUGE_VAL as "undefined" values, and ignores these. Will return HUGE_VAL if
/// the inputValues does not contain any valid values
//--------------------------------------------------------------------------------------------------
std::vector<double> RigStatisticsMath::calculateInterpolatedPercentiles( const std::vector<double>& inputValues,
const std::vector<double>& pValPositions,
RigStatisticsMath::PercentileStyle percentileStyle )
{
std::vector<double> sortedValues;
sortedValues.reserve( inputValues.size() );
for ( size_t i = 0; i < inputValues.size(); ++i )
{
if ( RiaStatisticsTools::isValidNumber<double>( inputValues[i] ) )
{
sortedValues.push_back( inputValues[i] );
}
}
std::sort( sortedValues.begin(), sortedValues.end() );
std::vector<double> percentiles( pValPositions.size(), HUGE_VAL );
if ( sortedValues.size() )
{
for ( size_t i = 0; i < pValPositions.size(); ++i )
{
double pVal = HUGE_VAL;
double pValPosition = cvf::Math::abs( pValPositions[i] ) / 100.0;
if ( percentileStyle == RigStatisticsMath::PercentileStyle::SWITCHED ) pValPosition = 1.0 - pValPosition;
double doubleIndex = ( sortedValues.size() - 1 ) * pValPosition;
size_t lowerValueIndex = static_cast<size_t>( floor( doubleIndex ) );
size_t upperValueIndex = lowerValueIndex + 1;
double upperValueWeight = doubleIndex - lowerValueIndex;
assert( upperValueWeight < 1.0 );
if ( upperValueIndex < sortedValues.size() )
{
pVal = ( 1.0 - upperValueWeight ) * sortedValues[lowerValueIndex] + upperValueWeight * sortedValues[upperValueIndex];
}
else
{
pVal = sortedValues[lowerValueIndex];
}
percentiles[i] = pVal;
}
}
return percentiles;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigHistogramCalculator::RigHistogramCalculator( double min, double max, size_t nBins, std::vector<size_t>* histogram )
{
assert( histogram );
assert( nBins > 0 );
if ( max == min )
{
nBins = 1;
} // Avoid dividing on 0 range
m_histogram = histogram;
m_min = min;
m_observationCount = 0;
// Initialize bins
m_histogram->resize( nBins );
for ( size_t i = 0; i < m_histogram->size(); ++i )
( *m_histogram )[i] = 0;
m_range = max - min;
m_maxIndex = nBins - 1;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigHistogramCalculator::addValue( double value )
{
if ( RiaStatisticsTools::isInvalidNumber<double>( value ) ) return;
size_t index = 0;
if ( m_maxIndex > 0 ) index = (size_t)( m_maxIndex * ( value - m_min ) / m_range );
if ( index < m_histogram->size() ) // Just clip to the max min range (-index will overflow to positive )
{
( *m_histogram )[index]++;
m_observationCount++;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigHistogramCalculator::addData( const std::vector<double>& data )
{
assert( m_histogram );
for ( size_t i = 0; i < data.size(); ++i )
{
addValue( data[i] );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigHistogramCalculator::addData( const std::vector<float>& data )
{
assert( m_histogram );
for ( size_t i = 0; i < data.size(); ++i )
{
addValue( data[i] );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigHistogramCalculator::calculatePercentil( double pVal, RigStatisticsMath::PercentileStyle percentileStyle )
{
assert( m_histogram );
assert( m_histogram->size() );
auto pValClamped = cvf::Math::clamp( pVal, 0.0, 1.0 );
assert( 0.0 <= pValClamped && pValClamped <= 1.0 );
if ( percentileStyle == RigStatisticsMath::PercentileStyle::SWITCHED )
{
pValClamped = 1.0 - pValClamped;
}
double pValObservationCount = pValClamped * m_observationCount;
if ( pValObservationCount == 0.0 ) return m_min;
size_t accObsCount = 0;
double binWidth = m_range / m_histogram->size();
for ( size_t binIdx = 0; binIdx < m_histogram->size(); ++binIdx )
{
size_t binObsCount = ( *m_histogram )[binIdx];
accObsCount += binObsCount;
if ( accObsCount >= pValObservationCount )
{
double domainValueAtEndOfBin = m_min + ( binIdx + 1 ) * binWidth;
double unusedFractionOfLastBin = (double)( accObsCount - pValObservationCount ) / binObsCount;
double histogramBasedEstimate = domainValueAtEndOfBin - unusedFractionOfLastBin * binWidth;
// See https://resinsight.org/docs/casegroupsandstatistics/#percentile-methods for details
return histogramBasedEstimate;
}
}
assert( false );
return HUGE_VAL;
}