ResInsight/ApplicationLibCode/ReservoirDataModel/RigReservoirBuilderMock.cpp
2021-01-11 15:27:45 +01:00

596 lines
23 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011- Statoil ASA
// Copyright (C) 2013- Ceetron Solutions AS
// Copyright (C) 2011-2012 Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigReservoirBuilderMock.h"
#include "RigActiveCellInfo.h"
#include "RigCell.h"
#include "RigEclipseCaseData.h"
#include "RigMainGrid.h"
#include "RigSimWellData.h"
/* rand example: guess the number */
#include <cstdio>
#include <cstdlib>
#include <ctime>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigReservoirBuilderMock::RigReservoirBuilderMock()
{
m_resultCount = 0;
m_timeStepCount = 0;
m_gridPointDimensions = cvf::Vec3st::ZERO;
m_enableWellData = true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::setGridPointDimensions( const cvf::Vec3st& gridPointDimensions )
{
m_gridPointDimensions = gridPointDimensions;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::setResultInfo( size_t resultCount, size_t timeStepCount )
{
m_resultCount = resultCount;
m_timeStepCount = timeStepCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::appendNodes( const cvf::Vec3d& min,
const cvf::Vec3d& max,
const cvf::Vec3st& cubeDimension,
std::vector<cvf::Vec3d>& nodes )
{
double dx = ( max.x() - min.x() ) / static_cast<double>( cubeDimension.x() );
double dy = ( max.y() - min.y() ) / static_cast<double>( cubeDimension.y() );
double dz = ( max.z() - min.z() ) / static_cast<double>( cubeDimension.z() );
double zPos = min.z();
size_t k;
for ( k = 0; k < cubeDimension.z(); k++ )
{
double yPos = min.y();
size_t j;
for ( j = 0; j < cubeDimension.y(); j++ )
{
double xPos = min.x();
size_t i;
for ( i = 0; i < cubeDimension.x(); i++ )
{
cvf::Vec3d cornerA( xPos, yPos, zPos );
cvf::Vec3d cornerB( xPos + dx, yPos + dy, zPos + dz );
appendCubeNodes( cornerA, cornerB, nodes );
xPos += dx;
}
yPos += dy;
}
zPos += dz;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::appendCubeNodes( const cvf::Vec3d& min, const cvf::Vec3d& max, std::vector<cvf::Vec3d>& nodes )
{
//
// 7---------6 Faces:
// /| /| |k 0 bottom 0, 3, 2, 1
// / | / | | /j 1 top 4, 5, 6, 7
// 4---------5 | |/ 2 front 0, 1, 5, 4
// | 3------|--2 *---i 3 right 1, 2, 6, 5
// | / | / 4 back 3, 7, 6, 2
// |/ |/ 5 left 0, 4, 7, 3
// 0---------1
cvf::Vec3d v0( min.x(), min.y(), min.z() );
cvf::Vec3d v1( max.x(), min.y(), min.z() );
cvf::Vec3d v2( max.x(), max.y(), min.z() );
cvf::Vec3d v3( min.x(), max.y(), min.z() );
cvf::Vec3d v4( min.x(), min.y(), max.z() );
cvf::Vec3d v5( max.x(), min.y(), max.z() );
cvf::Vec3d v6( max.x(), max.y(), max.z() );
cvf::Vec3d v7( min.x(), max.y(), max.z() );
nodes.push_back( v0 );
nodes.push_back( v1 );
nodes.push_back( v2 );
nodes.push_back( v3 );
nodes.push_back( v4 );
nodes.push_back( v5 );
nodes.push_back( v6 );
nodes.push_back( v7 );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::appendCells( size_t nodeStartIndex,
size_t cellCount,
RigGridBase* hostGrid,
std::vector<RigCell>& cells )
{
size_t cellIndexStart = cells.size();
cells.resize( cells.size() + cellCount );
#pragma omp parallel for
for ( long long i = 0; i < static_cast<long long>( cellCount ); i++ )
{
RigCell& riCell = cells[cellIndexStart + i];
riCell.setHostGrid( hostGrid );
riCell.setGridLocalCellIndex( i );
riCell.cornerIndices()[0] = nodeStartIndex + i * 8 + 0;
riCell.cornerIndices()[1] = nodeStartIndex + i * 8 + 1;
riCell.cornerIndices()[2] = nodeStartIndex + i * 8 + 2;
riCell.cornerIndices()[3] = nodeStartIndex + i * 8 + 3;
riCell.cornerIndices()[4] = nodeStartIndex + i * 8 + 4;
riCell.cornerIndices()[5] = nodeStartIndex + i * 8 + 5;
riCell.cornerIndices()[6] = nodeStartIndex + i * 8 + 6;
riCell.cornerIndices()[7] = nodeStartIndex + i * 8 + 7;
riCell.setParentCellIndex( 0 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::populateReservoir( RigEclipseCaseData* eclipseCase )
{
std::vector<cvf::Vec3d>& mainGridNodes = eclipseCase->mainGrid()->nodes();
appendNodes( m_minWorldCoordinate, m_maxWorldCoordinate, cellDimension(), mainGridNodes );
size_t mainGridNodeCount = mainGridNodes.size();
size_t mainGridCellCount = mainGridNodeCount / 8;
// Must create cells in main grid here, as this information is used when creating LGRs
appendCells( 0, mainGridCellCount, eclipseCase->mainGrid(), eclipseCase->mainGrid()->globalCellArray() );
size_t totalCellCount = mainGridCellCount;
size_t lgrIdx;
for ( lgrIdx = 0; lgrIdx < m_localGridRefinements.size(); lgrIdx++ )
{
LocalGridRefinement& lgr = m_localGridRefinements[lgrIdx];
// Compute all global cell indices to be replaced by local grid refinement
std::vector<size_t> mainGridIndicesWithSubGrid;
{
size_t i;
for ( i = lgr.m_mainGridMinCellPosition.x(); i <= lgr.m_mainGridMaxCellPosition.x(); i++ )
{
size_t j;
for ( j = lgr.m_mainGridMinCellPosition.y(); j <= lgr.m_mainGridMaxCellPosition.y(); j++ )
{
size_t k;
for ( k = lgr.m_mainGridMinCellPosition.z(); k <= lgr.m_mainGridMaxCellPosition.z(); k++ )
{
mainGridIndicesWithSubGrid.push_back( cellIndexFromIJK( i, j, k ) );
}
}
}
}
// Create local grid and set local grid dimensions
RigLocalGrid* localGrid = new RigLocalGrid( eclipseCase->mainGrid() );
localGrid->setGridId( 1 );
localGrid->setGridName( "LGR_1" );
eclipseCase->mainGrid()->addLocalGrid( localGrid );
localGrid->setParentGrid( eclipseCase->mainGrid() );
localGrid->setIndexToStartOfCells( mainGridNodes.size() / 8 );
cvf::Vec3st gridPointDimensions( lgr.m_singleCellRefinementFactors.x() * ( lgr.m_mainGridMaxCellPosition.x() -
lgr.m_mainGridMinCellPosition.x() + 1 ) +
1,
lgr.m_singleCellRefinementFactors.y() * ( lgr.m_mainGridMaxCellPosition.y() -
lgr.m_mainGridMinCellPosition.y() + 1 ) +
1,
lgr.m_singleCellRefinementFactors.z() * ( lgr.m_mainGridMaxCellPosition.z() -
lgr.m_mainGridMinCellPosition.z() + 1 ) +
1 );
localGrid->setGridPointDimensions( gridPointDimensions );
cvf::BoundingBox bb;
size_t cellIdx;
for ( cellIdx = 0; cellIdx < mainGridIndicesWithSubGrid.size(); cellIdx++ )
{
RigCell& cell = eclipseCase->mainGrid()->globalCellArray()[mainGridIndicesWithSubGrid[cellIdx]];
std::array<size_t, 8>& indices = cell.cornerIndices();
int nodeIdx;
for ( nodeIdx = 0; nodeIdx < 8; nodeIdx++ )
{
bb.add( eclipseCase->mainGrid()->nodes()[indices[nodeIdx]] );
}
// Deactivate cell in main grid
cell.setSubGrid( localGrid );
}
cvf::Vec3st lgrCellDimensions = gridPointDimensions - cvf::Vec3st( 1, 1, 1 );
appendNodes( bb.min(), bb.max(), lgrCellDimensions, mainGridNodes );
size_t subGridCellCount = ( mainGridNodes.size() / 8 ) - totalCellCount;
appendCells( totalCellCount * 8, subGridCellCount, localGrid, eclipseCase->mainGrid()->globalCellArray() );
totalCellCount += subGridCellCount;
}
eclipseCase->mainGrid()->setGridPointDimensions( m_gridPointDimensions );
if ( m_enableWellData )
{
addWellData( eclipseCase, eclipseCase->mainGrid() );
}
addFaults( eclipseCase );
// Set all cells active
RigActiveCellInfo* activeCellInfo = eclipseCase->activeCellInfo( RiaDefines::PorosityModelType::MATRIX_MODEL );
activeCellInfo->setReservoirCellCount( eclipseCase->mainGrid()->globalCellArray().size() );
for ( size_t i = 0; i < eclipseCase->mainGrid()->globalCellArray().size(); i++ )
{
activeCellInfo->setCellResultIndex( i, i );
}
activeCellInfo->setGridCount( 1 );
activeCellInfo->setGridActiveCellCounts( 0, eclipseCase->mainGrid()->globalCellArray().size() );
activeCellInfo->computeDerivedData();
// Add grid coarsening for main grid
if ( cellDimension().x() > 4 && cellDimension().y() > 5 && cellDimension().z() > 6 )
{
eclipseCase->mainGrid()->addCoarseningBox( 1, 2, 1, 3, 1, 4 );
eclipseCase->mainGrid()->addCoarseningBox( 3, 4, 4, 5, 5, 6 );
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::addLocalGridRefinement( const cvf::Vec3st& mainGridStart,
const cvf::Vec3st& mainGridEnd,
const cvf::Vec3st& refinementFactors )
{
m_localGridRefinements.push_back( LocalGridRefinement( mainGridStart, mainGridEnd, refinementFactors ) );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::setWorldCoordinates( cvf::Vec3d minWorldCoordinate, cvf::Vec3d maxWorldCoordinate )
{
m_minWorldCoordinate = minWorldCoordinate;
m_maxWorldCoordinate = maxWorldCoordinate;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigReservoirBuilderMock::inputProperty( RigEclipseCaseData* eclipseCase,
const QString& propertyName,
std::vector<double>* values )
{
size_t k;
/* initialize random seed: */
srand( time( nullptr ) );
/* generate secret number: */
int iSecret = rand() % 20 + 1;
for ( k = 0; k < eclipseCase->mainGrid()->globalCellArray().size(); k++ )
{
values->push_back( k * iSecret );
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigReservoirBuilderMock::staticResult( RigEclipseCaseData* eclipseCase, const QString& result, std::vector<double>* values )
{
values->resize( eclipseCase->mainGrid()->globalCellArray().size() );
#pragma omp parallel for
for ( long long k = 0; k < static_cast<long long>( eclipseCase->mainGrid()->globalCellArray().size() ); k++ )
{
values->at( k ) = ( k * 2 ) % eclipseCase->mainGrid()->globalCellArray().size();
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigReservoirBuilderMock::dynamicResult( RigEclipseCaseData* eclipseCase,
const QString& result,
size_t stepIndex,
std::vector<double>* values )
{
int resultIndex = 1;
QRegExp rx( "[0-9]{1,2}" ); // Find number 0-99
int digitPos = rx.indexIn( result );
if ( digitPos > -1 )
{
resultIndex = rx.cap( 0 ).toInt() + 1;
}
double scaleValue = 1.0 + resultIndex * 0.1;
double offsetValue = 100 * resultIndex;
values->resize( eclipseCase->mainGrid()->globalCellArray().size() );
#pragma omp parallel for
for ( long long k = 0; k < static_cast<long long>( eclipseCase->mainGrid()->globalCellArray().size() ); k++ )
{
double val = offsetValue +
scaleValue * ( ( stepIndex * 1000 + k ) % eclipseCase->mainGrid()->globalCellArray().size() );
values->at( k ) = val;
}
// Set result size to zero for some timesteps
if ( ( stepIndex + 1 ) % 3 == 0 )
{
values->clear();
}
return true;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::addWellData( RigEclipseCaseData* eclipseCase, RigGridBase* grid )
{
CVF_ASSERT( eclipseCase );
CVF_ASSERT( grid );
cvf::Vec3st dim = grid->gridPointDimensions();
cvf::Collection<RigSimWellData> wells;
int wellIdx;
for ( wellIdx = 0; wellIdx < 1; wellIdx++ )
{
cvf::ref<RigSimWellData> wellCellsTimeHistory = new RigSimWellData;
wellCellsTimeHistory->m_wellName = QString( "Well %1" ).arg( wellIdx );
wellCellsTimeHistory->m_wellCellsTimeSteps.resize( m_timeStepCount );
size_t timeIdx;
for ( timeIdx = 0; timeIdx < m_timeStepCount; timeIdx++ )
{
RigWellResultFrame& wellCells = wellCellsTimeHistory->m_wellCellsTimeSteps[timeIdx];
wellCells.m_productionType = RigWellResultFrame::PRODUCER;
wellCells.m_isOpen = true;
wellCells.m_wellHead.m_gridIndex = 0;
wellCells.m_wellHead.m_gridCellIndex = grid->cellIndexFromIJK( 1, 0, 0 );
// Connections
// int connectionCount = std::min(dim.x(), std::min(dim.y(), dim.z())) - 2;
size_t connectionCount = dim.z() - 2;
if ( connectionCount > 0 )
{
// Only main grid supported by now. Must be taken care of when LGRs are supported
wellCells.m_wellResultBranches.resize( 1 );
RigWellResultBranch& wellSegment = wellCells.m_wellResultBranches[0];
size_t connIdx;
for ( connIdx = 0; connIdx < connectionCount; connIdx++ )
{
if ( connIdx == ( size_t )( connectionCount / 4 ) ) continue;
RigWellResultPoint data;
data.m_gridIndex = 0;
if ( connIdx < dim.y() - 2 )
data.m_gridCellIndex = grid->cellIndexFromIJK( 1, 1 + connIdx, 1 + connIdx );
else
data.m_gridCellIndex = grid->cellIndexFromIJK( 1, dim.y() - 2, 1 + connIdx );
if ( connIdx < connectionCount / 2 )
{
data.m_isOpen = true;
}
else
{
data.m_isOpen = false;
}
if ( wellSegment.m_branchResultPoints.size() == 0 ||
wellSegment.m_branchResultPoints.back().m_gridCellIndex != data.m_gridCellIndex )
{
wellSegment.m_branchResultPoints.push_back( data );
if ( connIdx == connectionCount / 2 )
{
RigWellResultPoint deadEndData = data;
deadEndData.m_gridCellIndex = data.m_gridCellIndex + 1;
deadEndData.m_isOpen = true;
RigWellResultPoint deadEndData1 = data;
deadEndData1.m_gridCellIndex = data.m_gridCellIndex + 2;
deadEndData1.m_isOpen = false;
wellSegment.m_branchResultPoints.push_back( deadEndData );
wellSegment.m_branchResultPoints.push_back( deadEndData1 );
wellSegment.m_branchResultPoints.push_back( deadEndData );
data.m_isOpen = true;
wellSegment.m_branchResultPoints.push_back( data );
}
}
if ( connIdx < dim.y() - 2 )
{
data.m_gridCellIndex = grid->cellIndexFromIJK( 1, 1 + connIdx, 2 + connIdx );
if ( wellSegment.m_branchResultPoints.size() == 0 ||
wellSegment.m_branchResultPoints.back().m_gridCellIndex != data.m_gridCellIndex )
{
wellSegment.m_branchResultPoints.push_back( data );
}
}
}
}
}
// Create a mapping from result timestep indices to well timestep indices.
// Use one-to-one mapping for easy use
std::vector<size_t> map;
for ( timeIdx = 0; timeIdx < m_timeStepCount; timeIdx++ )
{
map.push_back( timeIdx );
}
wellCellsTimeHistory->m_resultTimeStepIndexToWellTimeStepIndex = map;
wells.push_back( wellCellsTimeHistory.p() );
}
eclipseCase->setSimWellData( wells );
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::addFaults( RigEclipseCaseData* eclipseCase )
{
if ( !eclipseCase ) return;
RigMainGrid* grid = eclipseCase->mainGrid();
if ( !grid ) return;
cvf::Collection<RigFault> faults;
{
cvf::ref<RigFault> fault = new RigFault;
fault->setName( "Fault A" );
cvf::Vec3st min = cvf::Vec3st::ZERO;
cvf::Vec3st max( 0, 0, cellDimension().z() - 2 );
if ( cellDimension().x() > 5 )
{
min.x() = cellDimension().x() / 2;
max.x() = min.x() + 2;
}
if ( cellDimension().y() > 5 )
{
min.y() = cellDimension().y() / 2;
max.y() = cellDimension().y() / 2;
}
cvf::CellRange cellRange( min, max );
fault->addCellRangeForFace( cvf::StructGridInterface::POS_I, cellRange );
faults.push_back( fault.p() );
}
grid->setFaults( faults );
// NNCs
RigConnectionContainer nncConnections;
{
size_t i1 = 2;
size_t j1 = 2;
size_t k1 = 3;
size_t i2 = 2;
size_t j2 = 3;
size_t k2 = 4;
addNnc( grid, i1, j1, k1, i2, j2, k2, nncConnections );
}
{
size_t i1 = 2;
size_t j1 = 2;
size_t k1 = 3;
size_t i2 = 2;
size_t j2 = 1;
size_t k2 = 4;
addNnc( grid, i1, j1, k1, i2, j2, k2, nncConnections );
}
grid->nncData()->setNativeConnections( nncConnections );
std::vector<double>& tranVals =
grid->nncData()->makeStaticConnectionScalarResult( RiaDefines::propertyNameCombTrans() );
for ( size_t cIdx = 0; cIdx < tranVals.size(); ++cIdx )
{
tranVals[cIdx] = 0.2;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::enableWellData( bool enableWellData )
{
m_enableWellData = false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigReservoirBuilderMock::addNnc( RigMainGrid* grid,
size_t i1,
size_t j1,
size_t k1,
size_t i2,
size_t j2,
size_t k2,
RigConnectionContainer& nncConnections )
{
size_t c1GlobalIndex = grid->cellIndexFromIJK( i1, j1, k1 );
size_t c2GlobalIndex = grid->cellIndexFromIJK( i2, j2, k2 );
RigConnection conn( c1GlobalIndex, c2GlobalIndex );
nncConnections.push_back( conn );
}