ResInsight/ApplicationLibCode/ReservoirDataModel/RigWellPathGeometryTools.cpp
Kristian Bendiksen e7d7a40251 Fix problem in RigWellPathGeometry::interpolateMdFromTvd starting at 0.0 MD.
The spline has to be extended to 0.0 regardless of the value of TVD.
2021-02-19 12:18:30 +01:00

357 lines
13 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2018- Equinor ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigWellPathGeometryTools.h"
#include "RigWellPath.h"
#include "cvfMath.h"
#include "cvfMatrix3.h"
#include <algorithm>
#include <cmath>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<cvf::Vec3d> RigWellPathGeometryTools::calculateLineSegmentNormals( const std::vector<cvf::Vec3d>& vertices,
double planeAngle )
{
std::vector<cvf::Vec3d> pointNormals;
if ( vertices.empty() ) return pointNormals;
pointNormals.reserve( vertices.size() );
const cvf::Vec3d up( 0, 0, 1 );
const cvf::Vec3d rotatedUp =
up.getTransformedVector( cvf::Mat3d::fromRotation( cvf::Vec3d( 0.0, 1.0, 0.0 ), planeAngle ) );
const cvf::Vec3d dominantDirection = estimateDominantDirectionInXYPlane( vertices );
const cvf::Vec3d projectionPlaneNormal = ( up ^ dominantDirection ).getNormalized();
CVF_ASSERT( projectionPlaneNormal * dominantDirection <= std::numeric_limits<double>::epsilon() );
double sumDotWithRotatedUp = 0.0;
for ( size_t i = 0; i < vertices.size() - 1; ++i )
{
cvf::Vec3d p1 = vertices[i];
cvf::Vec3d p2 = vertices[i + 1];
cvf::Vec3d tangent = ( p2 - p1 ).getNormalized();
cvf::Vec3d normal( 0, 0, 0 );
if ( cvf::Math::abs( tangent * projectionPlaneNormal ) < 0.7071 )
{
cvf::Vec3d projectedTangent =
( tangent - ( tangent * projectionPlaneNormal ) * projectionPlaneNormal ).getNormalized();
normal = ( projectedTangent ^ projectionPlaneNormal ).getNormalized();
normal = normal.getTransformedVector( cvf::Mat3d::fromRotation( tangent, planeAngle ) );
}
pointNormals.push_back( normal );
sumDotWithRotatedUp += normal * rotatedUp;
}
pointNormals.push_back( pointNormals.back() );
if ( sumDotWithRotatedUp < 0.0 )
{
for ( cvf::Vec3d& normal : pointNormals )
{
normal *= -1.0;
}
}
return interpolateUndefinedNormals( up, pointNormals, vertices );
}
//--------------------------------------------------------------------------------------------------
/// Lets you estimate MD values from an existing md/tvd relationship and a new set of TVD-values
/// Requires the points to be ordered from the start/top of the well path to the end/bottom.
//--------------------------------------------------------------------------------------------------
std::vector<double> RigWellPathGeometryTools::interpolateMdFromTvd( const std::vector<double>& originalMdValues,
const std::vector<double>& originalTvdValues,
const std::vector<double>& tvdValuesToInterpolateFrom )
{
CVF_ASSERT( !originalMdValues.empty() );
if ( originalMdValues.size() < 2u )
{
return { originalMdValues };
}
std::vector<double> interpolatedMdValues;
interpolatedMdValues.reserve( tvdValuesToInterpolateFrom.size() );
QwtSpline spline = createSpline( originalMdValues, originalTvdValues );
std::vector<int> segmentStartIndices = findSplineSegmentsContainingRoots( spline, tvdValuesToInterpolateFrom );
for ( size_t i = 0; i < segmentStartIndices.size(); ++i )
{
double currentTVDValue = tvdValuesToInterpolateFrom[i];
double startMD = spline.points().front().x();
double endMD = spline.points().back().y();
if ( segmentStartIndices[i] != -1 )
{
int startIndex = segmentStartIndices[i];
int endIndex = startIndex + 1;
// Search interval for best MD value
startMD = spline.points()[startIndex].x();
endMD = spline.points().back().y();
if ( endIndex < spline.points().size() )
{
if ( !interpolatedMdValues.empty() )
{
double mdDiff = 0.0;
if ( interpolatedMdValues.size() > 1 )
{
mdDiff = interpolatedMdValues[i - 1] - interpolatedMdValues[i - 2];
}
startMD = std::max( startMD, interpolatedMdValues.back() + 0.1 * mdDiff );
}
endMD = spline.points()[endIndex].x();
}
}
double mdValue = solveForX( spline, startMD, endMD, currentTVDValue );
interpolatedMdValues.push_back( mdValue );
}
return interpolatedMdValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<int>
RigWellPathGeometryTools::findSplineSegmentsContainingRoots( const QwtSpline& spline,
const std::vector<double>& tvdValuesToInterpolateFrom )
{
std::vector<int> segmentStartIndices;
segmentStartIndices.reserve( tvdValuesToInterpolateFrom.size() );
int lastSplineStartIndex = 0;
for ( double tvdValue : tvdValuesToInterpolateFrom )
{
int currentSplineStartIndex = lastSplineStartIndex;
bool foundMatch = false;
// Increment current_it until we find an interval containing our TVD
while ( currentSplineStartIndex < spline.points().size() - 2 )
{
double diffCurrent = spline.points()[currentSplineStartIndex].y() - tvdValue;
if ( std::abs( diffCurrent ) < 1.0e-8 ) // Current is matching the point
{
foundMatch = true;
break;
}
int nextStartIndex = currentSplineStartIndex + 1;
double diffNext = spline.points()[nextStartIndex].y() - tvdValue;
if ( diffCurrent * diffNext < 0.0 ) // One is above, the other is below
{
foundMatch = true;
break;
}
currentSplineStartIndex = nextStartIndex;
}
if ( foundMatch )
{
segmentStartIndices.push_back( currentSplineStartIndex );
lastSplineStartIndex = currentSplineStartIndex;
}
else
{
segmentStartIndices.push_back( -1 );
}
}
return segmentStartIndices;
}
std::vector<cvf::Vec3d> RigWellPathGeometryTools::interpolateUndefinedNormals( const cvf::Vec3d& planeNormal,
const std::vector<cvf::Vec3d>& normals,
const std::vector<cvf::Vec3d>& vertices )
{
std::vector<cvf::Vec3d> interpolated( normals );
cvf::Vec3d lastNormalNonInterpolated( 0, 0, 0 );
cvf::Vec3d lastNormalAny( 0, 0, 0 );
double distanceFromLast = 0.0;
for ( size_t i = 0; i < normals.size(); ++i )
{
cvf::Vec3d currentNormal = normals[i];
bool currentInterpolated = false;
if ( i > 0 )
{
distanceFromLast += ( vertices[i] - vertices[i - 1] ).length();
}
if ( currentNormal.length() == 0.0 ) // Undefined. Need to estimate from neighbors.
{
currentInterpolated = true;
currentNormal = planeNormal; // By default use the plane normal
cvf::Vec3d nextNormal( 0, 0, 0 );
double distanceToNext = 0.0;
for ( size_t j = i + 1; j < normals.size() && nextNormal.length() == 0.0; ++j )
{
nextNormal = normals[j];
distanceToNext += ( vertices[j] - vertices[j - 1] ).length();
}
if ( lastNormalNonInterpolated.length() > 0.0 && nextNormal.length() > 0.0 )
{
// Both last and next are acceptable, interpolate!
currentNormal =
( distanceToNext * lastNormalNonInterpolated + distanceFromLast * nextNormal ).getNormalized();
}
else if ( lastNormalNonInterpolated.length() > 0.0 )
{
currentNormal = lastNormalNonInterpolated;
}
else if ( nextNormal.length() > 0.0 )
{
currentNormal = nextNormal;
}
}
if ( i > 0 && currentNormal * lastNormalAny < -std::numeric_limits<double>::epsilon() )
{
currentNormal *= -1.0;
}
if ( !currentInterpolated )
{
lastNormalNonInterpolated = currentNormal;
distanceFromLast = 0.0; // Reset distance
}
lastNormalAny = currentNormal;
interpolated[i] = currentNormal;
}
return interpolated;
}
cvf::Vec3d RigWellPathGeometryTools::estimateDominantDirectionInXYPlane( const std::vector<cvf::Vec3d>& vertices )
{
cvf::Vec3d directionSum( 0, 0, 0 );
for ( size_t i = 1; i < vertices.size(); ++i )
{
cvf::Vec3d vec = vertices[i] - vertices[i - 1];
vec.z() = 0.0;
if ( directionSum.length() > 0.0 && ( directionSum * vec ) < 0.0 )
{
vec *= -1;
}
directionSum += vec;
}
if ( directionSum.length() < 1.0e-8 )
{
directionSum = cvf::Vec3d( 0, -1, 0 );
}
return directionSum.getNormalized();
}
//--------------------------------------------------------------------------------------------------
/// Golden-section minimization: https://en.wikipedia.org/wiki/Golden-section_search
//--------------------------------------------------------------------------------------------------
double RigWellPathGeometryTools::solveForX( const QwtSpline& spline, double minX, double maxX, double y )
{
const double phi = ( 1.0 + std::sqrt( 5.0 ) ) / 2.0;
const double tol = 1.0e-8;
double a = minX, b = maxX;
double c = b - ( b - a ) / phi;
double d = a + ( b - a ) / phi;
double fc = spline.value( c ) - y;
double fd = spline.value( d ) - y;
for ( int n = 0; n < 100; ++n )
{
if ( std::fabs( c - d ) < tol )
{
break;
}
if ( std::fabs( fc ) < std::fabs( fd ) )
{
b = d;
d = c;
fd = fc;
c = b - ( b - a ) / phi;
fc = spline.value( c ) - y;
}
else
{
a = c;
c = d;
fc = fd;
d = a + ( b - a ) / phi;
fd = spline.value( d ) - y;
}
}
return ( a + b ) / 2.0;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
QwtSpline RigWellPathGeometryTools::createSpline( const std::vector<double>& originalMdValues,
const std::vector<double>& originalTvdValues )
{
QPolygonF polygon;
for ( size_t i = 0; i < originalMdValues.size(); ++i )
{
polygon << QPointF( originalMdValues[i], originalTvdValues[i] );
}
QwtSplineCurveFitter curveFitter;
QPolygonF splinePoints = curveFitter.fitCurve( polygon );
// Extend spline from 0.0 (if it does not already exist) to a large value for MD
// This is to force a specific and known extrapolation.
// Otherwise we get an undefined and unknown extrapolation.
if ( !( splinePoints[0].x() == 0.0 ) )
{
double x1 = splinePoints[0].x();
double x2 = splinePoints[1].x();
double y1 = splinePoints[0].y();
double y2 = splinePoints[1].y();
double M = ( y2 - y1 ) / ( x2 - x1 );
QPointF startPoint( 0.0f, M * ( 0.0f - x1 ) + y1 );
splinePoints.push_front( startPoint );
}
{
int N = splinePoints.size() - 1;
double x1 = splinePoints[N - 1].x();
double x2 = splinePoints[N].x();
double y1 = splinePoints[N - 1].y();
double y2 = splinePoints[N].y();
double M = ( y2 - y1 ) / ( x2 - x1 );
double endX = 2.0 * splinePoints[N].x();
QPointF endPoint( endX, M * ( endX - x1 ) + y1 );
splinePoints.push_back( endPoint );
}
QwtSpline spline;
spline.setPoints( splinePoints );
return spline;
}