ResInsight/ApplicationCode/ReservoirDataModel/RigSimWellData.cpp

391 lines
14 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2011-2012 Statoil ASA, Ceetron AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigSimWellData.h"
#include <map>
#include <QDebug>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellResultFrame& RigSimWellData::wellResultFrame(size_t resultTimeStepIndex) const
{
CVF_ASSERT(resultTimeStepIndex < m_resultTimeStepIndexToWellTimeStepIndex.size());
size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex];
CVF_ASSERT(wellTimeStepIndex < m_wellCellsTimeSteps.size());
return m_wellCellsTimeSteps[wellTimeStepIndex];
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::computeMappingFromResultTimeIndicesToWellTimeIndices(const std::vector<QDateTime>& simulationTimeSteps)
{
m_resultTimeStepIndexToWellTimeStepIndex.clear();
if (m_wellCellsTimeSteps.size() == 0) return;
m_resultTimeStepIndexToWellTimeStepIndex.resize(simulationTimeSteps.size(), cvf::UNDEFINED_SIZE_T);
if (false)
{
qDebug() << "Well TimeStamps";
for (size_t i = 0; i < m_wellCellsTimeSteps.size(); i++)
{
qDebug() << m_wellCellsTimeSteps[i].m_timestamp.toString();
}
qDebug() << "Result TimeStamps";
for (size_t i = 0; i < simulationTimeSteps.size(); i++)
{
qDebug() << simulationTimeSteps[i].toString();
}
}
size_t wellTimeStepIndex = 0;
for (size_t resultTimeStepIndex = 0; resultTimeStepIndex < simulationTimeSteps.size(); resultTimeStepIndex++)
{
while ( wellTimeStepIndex < m_wellCellsTimeSteps.size() &&
m_wellCellsTimeSteps[wellTimeStepIndex].m_timestamp < simulationTimeSteps[resultTimeStepIndex])
{
wellTimeStepIndex++;
}
if ( wellTimeStepIndex < m_wellCellsTimeSteps.size()
&& m_wellCellsTimeSteps[wellTimeStepIndex].m_timestamp == simulationTimeSteps[resultTimeStepIndex])
{
m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex] = wellTimeStepIndex;
}
else
{
m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex] = cvf::UNDEFINED_SIZE_T;
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::hasWellResult(size_t resultTimeStepIndex) const
{
if (resultTimeStepIndex >= m_resultTimeStepIndexToWellTimeStepIndex.size())
{
return false;
}
size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex];
return wellTimeStepIndex != cvf::UNDEFINED_SIZE_T;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::hasAnyValidCells(size_t resultTimeStepIndex) const
{
if (resultTimeStepIndex >= m_resultTimeStepIndexToWellTimeStepIndex.size())
{
return false;
}
size_t wellTimeStepIndex = m_resultTimeStepIndexToWellTimeStepIndex[resultTimeStepIndex];
if( wellTimeStepIndex == cvf::UNDEFINED_SIZE_T) return false;
if (wellResultFrame(resultTimeStepIndex).m_wellHead.isCell()) return true;
const std::vector<RigWellResultBranch> &resBranches = wellResultFrame(resultTimeStepIndex).m_wellResultBranches;
for ( size_t i = 0 ; i < resBranches.size(); ++i )
{
for (size_t cIdx = 0; cIdx < resBranches[i].m_branchResultPoints.size(); ++cIdx )
{
if (resBranches[i].m_branchResultPoints[cIdx].isCell()) return true;
}
}
return false;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool operator== (const RigWellResultPoint& p1, const RigWellResultPoint& p2)
{
return
p1.m_gridIndex == p2.m_gridIndex
&& p1.m_gridCellIndex == p2.m_gridCellIndex
&& p1.m_ertBranchId == p2.m_ertBranchId
&& p1.m_ertSegmentId == p2.m_ertSegmentId;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::computeStaticWellCellPath() const
{
if (m_wellCellsTimeSteps.size() == 0) return;
// Mapping of Branch ERT ID to ResultPoint list
std::map < int, std::list< RigWellResultPoint > > staticWellBranches;
// Add ResultCell data from the first timestep to the final result.
for (size_t bIdx = 0; bIdx < m_wellCellsTimeSteps[0].m_wellResultBranches.size(); ++bIdx)
{
int branchErtId = m_wellCellsTimeSteps[0].m_wellResultBranches[bIdx].m_ertBranchId;
const std::vector<RigWellResultPoint>& frameCells = m_wellCellsTimeSteps[0].m_wellResultBranches[bIdx].m_branchResultPoints;
std::list< RigWellResultPoint >& branch = staticWellBranches[branchErtId];
for(size_t cIdx = 0; cIdx < frameCells.size(); ++cIdx)
{
branch.push_back(frameCells[cIdx]);
}
}
for (size_t tIdx = 1; tIdx < m_wellCellsTimeSteps.size(); ++tIdx)
{
// Merge well branches separately
for (size_t bIdx = 0; bIdx < m_wellCellsTimeSteps[tIdx].m_wellResultBranches.size(); ++bIdx)
{
int branchId = m_wellCellsTimeSteps[tIdx].m_wellResultBranches[bIdx].m_ertBranchId;
const std::vector<RigWellResultPoint>& resBranch = m_wellCellsTimeSteps[tIdx].m_wellResultBranches[bIdx].m_branchResultPoints;
std::list< RigWellResultPoint >& stBranch = staticWellBranches[branchId];
std::list< RigWellResultPoint >::iterator sEndIt;
size_t rStartIdx = -1;
size_t rEndIdx = -1;
// First detect if we have cells on the start of the result frame, that is not in the static frame
{
sEndIt = stBranch.begin();
bool found = false;
if (!stBranch.empty())
{
for (rEndIdx = 0; !found && rEndIdx < resBranch.size(); ++rEndIdx)
{
if ((*sEndIt) == (resBranch[rEndIdx])) { found = true; break; }
}
}
if (found)
{
if (rEndIdx > 0)
{
// Found cells in start, merge them in
for (size_t cIdx = 0; cIdx < rEndIdx; ++cIdx)
{
stBranch.insert(sEndIt, resBranch[cIdx]);
}
}
}
else
{
// The result probably starts later in the well
rEndIdx = 0;
}
rStartIdx = rEndIdx;
}
// Now find all result cells in ranges between pairs in the static path
// If the result has items that "compete" with those in the static path,
// those items are inserted after the ones in the static path. This
// is not neccesarily correct. They could be in front, and also merged in
// strange ways. A geometric test could make this more robust, but we will
// not solve before we see that it actually ends up as a problem
if (sEndIt != stBranch.end()) ++sEndIt;
for ( ; sEndIt != stBranch.end() ; ++sEndIt)
{
bool found = false;
for (rEndIdx += 1; !found && rEndIdx < resBranch.size(); ++rEndIdx)
{
if ((*sEndIt) == (resBranch[rEndIdx])) { found = true; break; }
}
if (found)
{
if (rEndIdx - rStartIdx > 1)
{
// Found cell range in result that we do not have in the static result, merge them in
for (size_t cIdx = rStartIdx + 1; cIdx < rEndIdx; ++cIdx)
{
stBranch.insert(sEndIt, resBranch[cIdx]);
}
}
}
else
{
// The static path probably has some extra cells
rEndIdx = rStartIdx;
}
rStartIdx = rEndIdx;
}
// Then add cells from the end of the resultpath not present in the static path
for (size_t cIdx = rEndIdx + 1; cIdx < resBranch.size(); ++cIdx)
{
stBranch.push_back(resBranch[cIdx]);
}
}
}
// Populate the static well info
std::map < int, std::list< RigWellResultPoint > >::iterator bIt;
m_staticWellCells.m_wellResultBranches.clear();
m_staticWellCells.m_wellHead = m_wellCellsTimeSteps[0].m_wellHead;
for (bIt = staticWellBranches.begin(); bIt != staticWellBranches.end(); ++bIt)
{
// Copy from first time step
RigWellResultBranch rigBranch;
rigBranch.m_ertBranchId = bIt->first;
std::list< RigWellResultPoint >& branch = bIt->second;
std::list< RigWellResultPoint >::iterator cIt;
for (cIt = branch.begin(); cIt != branch.end(); ++cIt)
{
rigBranch.m_branchResultPoints.push_back(*cIt);
}
m_staticWellCells.m_wellResultBranches.push_back(rigBranch);
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigSimWellData::setMultiSegmentWell(bool isMultiSegmentWell)
{
m_isMultiSegmentWell = isMultiSegmentWell;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::isMultiSegmentWell() const
{
return m_isMultiSegmentWell;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultFrame::WellProductionType RigSimWellData::wellProductionType(size_t resultTimeStepIndex) const
{
if (hasWellResult(resultTimeStepIndex))
{
const RigWellResultFrame& wResFrame = wellResultFrame(resultTimeStepIndex);
return wResFrame.m_productionType;
}
else
{
return RigWellResultFrame::UNDEFINED_PRODUCTION_TYPE;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellResultFrame& RigSimWellData::staticWellCells() const
{
// Make sure we have computed the static representation of the well
if (m_staticWellCells.m_wellResultBranches.size() == 0)
{
computeStaticWellCellPath();
}
return m_staticWellCells;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
bool RigSimWellData::isOpen(size_t resultTimeStepIndex) const
{
if (hasWellResult(resultTimeStepIndex))
{
const RigWellResultFrame& wResFrame = wellResultFrame(resultTimeStepIndex);
return wResFrame.m_isOpen;
}
else
{
return false;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
const RigWellResultPoint* RigWellResultFrame::findResultCell(size_t gridIndex, size_t gridCellIndex) const
{
CVF_ASSERT(gridIndex != cvf::UNDEFINED_SIZE_T && gridCellIndex != cvf::UNDEFINED_SIZE_T);
for (size_t wb = 0; wb < m_wellResultBranches.size(); ++wb)
{
for (size_t wc = 0; wc < m_wellResultBranches[wb].m_branchResultPoints.size(); ++wc)
{
if ( m_wellResultBranches[wb].m_branchResultPoints[wc].m_gridCellIndex == gridCellIndex
&& m_wellResultBranches[wb].m_branchResultPoints[wc].m_gridIndex == gridIndex )
{
return &(m_wellResultBranches[wb].m_branchResultPoints[wc]);
}
}
}
// If we could not find the cell among the real connections, we try the wellhead.
// The wellhead does however not have a real connection state, and is thereby always rendered as closed
// If we have a real connection in the wellhead, we should not end here. See Github issue #712
if (m_wellHead.m_gridCellIndex == gridCellIndex && m_wellHead.m_gridIndex == gridIndex )
{
return &m_wellHead;
}
return NULL;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigWellResultPoint RigWellResultFrame::wellHeadOrStartCell() const
{
if (m_wellHead.isCell()) return m_wellHead;
if (m_wellResultBranches.size() && m_wellResultBranches.front().m_branchResultPoints.size() )
{
return m_wellResultBranches.front().m_branchResultPoints.front();
}
return m_wellHead; // Nothing else to do
}