Files
ResInsight/Fwk/AppFwk/cafVizExtensions/cafHexGridIntersectionTools/cafHexGridIntersectionTools.cpp

1563 lines
79 KiB
C++

#include "cafHexGridIntersectionTools.h"
#include "cvfPlane.h"
#include <cmath>
#include <algorithm>
#include <array>
namespace caf {
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
//HexGridIntersectionTools::ClipVx::ClipVx()
// : vx(cvf::Vec3d::ZERO),
// normDistFromEdgeVx1(HUGE_VAL),
// clippedEdgeVx1Id(-1),
// clippedEdgeVx2Id(-1),
// isVxIdsNative(true),
// derivedVxLevel(-1)
//{
//}
//
//--------------------------------------------------------------------------------------------------
/// Find intersection between a line segment and a plane
///
/// \param a Start of line segment
/// \param b End of line segment
/// \param intersection Returns intersection point along the infinite line defined by a-b
/// \param normalizedDistFromA Returns the normalized (0..1) position from a to b of the intersection point.
/// Will return values along the infinite line defined by the a-b direcion,
/// and HUGE_VAL if plane and line are parallel.
/// \param epsilon Tolerance margin for accepting the position being within (0..1)
///
/// \return True if line segment intersects the plane
//--------------------------------------------------------------------------------------------------
bool HexGridIntersectionTools::planeLineIntersect(const cvf::Plane& plane,
const cvf::Vec3d& a,
const cvf::Vec3d& b,
cvf::Vec3d* intersection,
double* normalizedDistFromA,
double epsilon)
{
// From Real-Time Collision Detection by Christer Eriscon, published by Morgen Kaufmann Publishers, (c) 2005 Elsevier Inc
cvf::Vec3d ab = b - a;
cvf::Vec3d normal = plane.normal();
double normDotAB = normal * ab;
if (normDotAB == 0)
{
(*normalizedDistFromA) = HUGE_VAL;
return false;
}
double interpolationParameter = (-plane.D() - (normal * a)) / normDotAB;
(*intersection) = a + interpolationParameter * ab;
(*normalizedDistFromA) = interpolationParameter;
return (interpolationParameter >= -epsilon && interpolationParameter <= 1.0 + epsilon);
}
//--------------------------------------------------------------------------------------------------
/// Returns whether the triangle was hit by the plane.
/// isMostVxesOnPositiveSide returns true if all or two of the vxes is on the positive side of the plane.
/// newVx1/2.vx1ClippedEdge returns the index of the single vx that is alone on one side of the plane.
/// Going newVx1 to newVx2 will make the top triangle same winding as the original triangle,
/// and the quad opposite winding
// The permutations except for the trivial cases where all vertices are in front or behind plane:
//
//
// 1. Single vertex on positive side of plane => isMostVxesOnPositiveSide = false
//
// +\ /\3 /\3 /+ /\3 .
// \ / \ / \ / + / \ + .
// \2 \ / \/1 __1/____\2__ .
// / \ \ / /\ / \ .
// 1/___\1___\2 1/____2/__\2 1/________\2 .
// +\ /+
//
//
// 2. Two vertices vertex on positive side of plane => isMostVxesOnPositiveSide = true
//
// \+ /\3 /\3 +/ /\3 .
// \ / \ / \ / / \ .
// \2 \ / \/1 __1/____\2__ .
// / \ \ / /\ + / \ + .
// 1/___\1___\2 1/____2/__\2 1/________\2 .
// \+ +/
//
// 3. The special cases of touching one vertex, either exactly or "close enough"
// in finite precision. These occur for both 2. and 3 and in any rotation.
//
// a) Should not be counted b) May need a tolerance margin to intersect
// as intersecting: both 1->3 and 2->3 as it is theoretically required to:
// 3
// \ /\ /|\
// \ / \ / | \
// \ / \ / | \
// \ / \ / | \
// \/________\ /____|____\
// \ 1 | 2
//--------------------------------------------------------------------------------------------------
bool HexGridIntersectionTools::planeTriangleIntersection(const cvf::Plane& plane,
const cvf::Vec3d& p1, size_t p1Id,
const cvf::Vec3d& p2, size_t p2Id,
const cvf::Vec3d& p3, size_t p3Id,
ClipVx* newVx1, ClipVx* newVx2,
bool * isMostVxesOnPositiveSide)
{
const double nonDimensionalTolerance = 1.0e-8;
double sqrSignedDistances[3];
sqrSignedDistances[0] = plane.distanceSquared(p1);
sqrSignedDistances[1] = plane.distanceSquared(p2);
sqrSignedDistances[2] = plane.distanceSquared(p3);
double maxSqrAbsDistance = std::max(std::abs(sqrSignedDistances[0]),
std::max(std::abs(sqrSignedDistances[1]),
std::abs(sqrSignedDistances[2])));
const double sqrDistanceTolerance = nonDimensionalTolerance * maxSqrAbsDistance;
int onPosSide[3];
onPosSide[0] = sqrSignedDistances[0] >= 0;
onPosSide[1] = sqrSignedDistances[1] >= 0;
onPosSide[2] = sqrSignedDistances[2] >= 0;
const int numPositiveVertices = onPosSide[0] + onPosSide[1] + onPosSide[2];
// The entire triangle is on the negative side
// Clip everything
if (numPositiveVertices == 0)
{
(*isMostVxesOnPositiveSide) = false;
return false;
}
// All triangle vertices are on the positive side
if (numPositiveVertices == 3)
{
(*isMostVxesOnPositiveSide) = true;
return false;
}
(*isMostVxesOnPositiveSide) = (numPositiveVertices == 2);
int topVx = 0;
if (numPositiveVertices == 1)
{
if (onPosSide[0]) topVx = 1;
if (onPosSide[1]) topVx = 2;
if (onPosSide[2]) topVx = 3;
// Case 3a: Two negative distances and the last is within tolerance of zero.
if (sqrSignedDistances[topVx - 1] < sqrDistanceTolerance)
{
return false;
}
}
else if (numPositiveVertices == 2)
{
if (!onPosSide[0]) topVx = 1;
if (!onPosSide[1]) topVx = 2;
if (!onPosSide[2]) topVx = 3;
// Case 3a: Two positive distances and the last is within tolerance of zero.
if (sqrSignedDistances[topVx - 1] > -sqrDistanceTolerance)
{
return false;
}
}
else
{
CVF_ASSERT(false);
}
bool ok1 = false;
bool ok2 = false;
if (topVx == 1)
{
ok1 = planeLineIntersect(plane, p1, p2, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1), nonDimensionalTolerance);
(*newVx1).clippedEdgeVx1Id = p1Id;
(*newVx1).clippedEdgeVx2Id = p2Id;
ok2 = planeLineIntersect(plane, p1, p3, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1), nonDimensionalTolerance);
(*newVx2).clippedEdgeVx1Id = p1Id;
(*newVx2).clippedEdgeVx2Id = p3Id;
}
else if (topVx == 2)
{
ok1 = planeLineIntersect(plane, p2, p3, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1), nonDimensionalTolerance);
(*newVx1).clippedEdgeVx1Id = p2Id;
(*newVx1).clippedEdgeVx2Id = p3Id;
ok2 = planeLineIntersect(plane, p2, p1, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1), nonDimensionalTolerance);
(*newVx2).clippedEdgeVx1Id = p2Id;
(*newVx2).clippedEdgeVx2Id = p1Id;
}
else if (topVx == 3)
{
ok1 = planeLineIntersect(plane, p3, p1, &((*newVx1).vx), &((*newVx1).normDistFromEdgeVx1), nonDimensionalTolerance);
(*newVx1).clippedEdgeVx1Id = p3Id;
(*newVx1).clippedEdgeVx2Id = p1Id;
ok2 = planeLineIntersect(plane, p3, p2, &((*newVx2).vx), &((*newVx2).normDistFromEdgeVx1), nonDimensionalTolerance);
(*newVx2).clippedEdgeVx1Id = p3Id;
(*newVx2).clippedEdgeVx2Id = p2Id;
}
else
{
CVF_ASSERT(false);
}
//CVF_TIGHT_ASSERT(ok1 && ok2);
return true;
}
//--------------------------------------------------------------------------------------------------
//
//
// P2 P2 P2 P2
// Keep Keep Keep Keep
// None Top 3 Quad All
// | | + | |
// | | / \ | |
// | | | | / \ | | | |
// | | | | / \ | | | |
// | | | | / \| | | |
// | | | |/ 1+ | | |
// | | | +2 |\ | | |
// | | | /| | \ | | |
// | | | / | | \ | _ | |
// | | | / | | \| |\Dir | |
// | | |/ | | 1+ \ | |
// | | +2 | | |\ \ | |
// | | /| | | | \ | |
// | | / |1 |1 2| 2| \ | |
// | | +--+----+----------+----+---+ | |
// | |1 | | | | 2 | |
// P1 P1 P1 P1
// Keep Keep Keep Keep
// All Quad Top None
//
//
// Clips the supplied triangles into new triangles returned in clippedTriangleVxes.
// New vertices have set isVxIdsNative = false and their vxIds is indices into triangleVxes
// The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex.
// This method will keep the faces provided, while added edges is marked with no face = 6
//--------------------------------------------------------------------------------------------------
void HexGridIntersectionTools::clipTrianglesBetweenTwoParallelPlanes(const std::vector<ClipVx>& triangleVxes,
const std::vector<int>& cellFaceForEachTriangleEdge,
const cvf::Plane& p1Plane,
const cvf::Plane& p2Plane,
std::vector<ClipVx>* clippedTriangleVxes,
std::vector<int>* cellFaceForEachClippedTriangleEdge)
{
#define HT_NO_FACE 6
size_t triangleCount = triangleVxes.size() / 3;
for (size_t tIdx = 0; tIdx < triangleCount; ++tIdx)
{
size_t triVxIdx = tIdx * 3;
ClipVx newVx1OnP1;
newVx1OnP1.isVxIdsNative = false;
ClipVx newVx2OnP1;
newVx2OnP1.isVxIdsNative = false;
bool isMostVxesOnPositiveSideOfP1 = false;
bool isIntersectingP1 = planeTriangleIntersection(p1Plane,
triangleVxes[triVxIdx + 0].vx, triVxIdx + 0,
triangleVxes[triVxIdx + 1].vx, triVxIdx + 1,
triangleVxes[triVxIdx + 2].vx, triVxIdx + 2,
&newVx1OnP1, &newVx2OnP1, &isMostVxesOnPositiveSideOfP1);
if (!isIntersectingP1 && !isMostVxesOnPositiveSideOfP1)
{
continue; // Discard triangle
}
ClipVx newVx1OnP2;
newVx1OnP2.isVxIdsNative = false;
ClipVx newVx2OnP2;
newVx2OnP2.isVxIdsNative = false;
bool isMostVxesOnPositiveSideOfP2 = false;
bool isIntersectingP2 = planeTriangleIntersection(p2Plane,
triangleVxes[triVxIdx + 0].vx, triVxIdx + 0,
triangleVxes[triVxIdx + 1].vx, triVxIdx + 1,
triangleVxes[triVxIdx + 2].vx, triVxIdx + 2,
&newVx1OnP2, &newVx2OnP2, &isMostVxesOnPositiveSideOfP2);
if (!isIntersectingP2 && !isMostVxesOnPositiveSideOfP2)
{
continue; // Discard triangle
}
bool p1KeepAll = (!isIntersectingP1 && isMostVxesOnPositiveSideOfP1);
bool p2KeepAll = (!isIntersectingP2 && isMostVxesOnPositiveSideOfP2);
bool p1KeepQuad = ( isIntersectingP1 && isMostVxesOnPositiveSideOfP1);
bool p2KeepQuad = ( isIntersectingP2 && isMostVxesOnPositiveSideOfP2);
bool p1KeepTop = ( isIntersectingP1 && !isMostVxesOnPositiveSideOfP1);
bool p2KeepTop = ( isIntersectingP2 && !isMostVxesOnPositiveSideOfP2);
if (p1KeepAll && p2KeepAll)
{
// Keep the triangle
clippedTriangleVxes->push_back(triangleVxes[triVxIdx + 0]);
clippedTriangleVxes->push_back(triangleVxes[triVxIdx + 1]);
clippedTriangleVxes->push_back(triangleVxes[triVxIdx + 2]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[triVxIdx + 0]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[triVxIdx + 1]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[triVxIdx + 2]);
continue;
}
if (p1KeepQuad && p2KeepAll)
{
// Split the resulting quad and add the two triangles
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(newVx1OnP1);
clippedTriangleVxes->push_back(triangleVxes[newVx1OnP1.clippedEdgeVx2Id]);
clippedTriangleVxes->push_back(triangleVxes[newVx1OnP1.clippedEdgeVx2Id]);
clippedTriangleVxes->push_back(triangleVxes[newVx2OnP1.clippedEdgeVx2Id]);
clippedTriangleVxes->push_back(newVx2OnP1);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
continue;
}
if (p2KeepQuad && p1KeepAll)
{
// Split the resulting quad and add the two triangles
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(triangleVxes[newVx2OnP2.clippedEdgeVx2Id]);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(triangleVxes[newVx1OnP2.clippedEdgeVx2Id]);
clippedTriangleVxes->push_back(triangleVxes[newVx2OnP2.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
continue;
}
if (p1KeepTop && p2KeepAll)
{
// Add the top triangle
clippedTriangleVxes->push_back(newVx1OnP1);
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(triangleVxes[newVx1OnP1.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]);
continue;
}
if (p2KeepTop && p1KeepAll)
{
// Add the top triangle
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(triangleVxes[newVx1OnP2.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]);
continue;
}
if (p1KeepQuad && p2KeepQuad)
{
// We end up with a pentagon.
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(newVx1OnP1);
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(newVx2OnP1);
// Two variants. The original point might be along newVx1OnP1 to newVx2OnP2 or along newVx2OnP1 to newVx1OnP2
if (newVx1OnP1.clippedEdgeVx2Id == newVx2OnP2.clippedEdgeVx1Id)
{
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(triangleVxes[newVx2OnP1.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]);
}
else
{
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(newVx1OnP1);
clippedTriangleVxes->push_back(triangleVxes[newVx2OnP2.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]);
}
continue;
}
if (p1KeepQuad && p2KeepTop)
{
// We end up with a quad.
clippedTriangleVxes->push_back(newVx1OnP1);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(newVx2OnP1);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP1.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP2.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
continue;
}
if (p2KeepQuad && p1KeepTop)
{
// We end up with a quad.
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(newVx2OnP2);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(newVx2OnP1);
clippedTriangleVxes->push_back(newVx1OnP2);
clippedTriangleVxes->push_back(newVx1OnP1);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx2OnP1.clippedEdgeVx2Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
cellFaceForEachClippedTriangleEdge->push_back(cellFaceForEachTriangleEdge[newVx1OnP2.clippedEdgeVx1Id]);
cellFaceForEachClippedTriangleEdge->push_back(HT_NO_FACE);
continue;
}
CVF_ASSERT(false);
}
}
//--------------------------------------------------------------------------------------------------
// Creates a plane with normal perpendicular to the edge, pointing in the direction of the pointInNormalDirection
//--------------------------------------------------------------------------------------------------
cvf::Plane createPlaneFromEdgeAndPointInNormalDirection(cvf::Vec3d ep1, cvf::Vec3d ep2, cvf::Vec3d pointInNormalDirection)
{
cvf::Vec3d ep1ep2 = ep2 - ep1;
cvf::Vec3d ep1pointforNorm = pointInNormalDirection - ep1;
cvf::Vec3d triNormal = ep1ep2^ep1pointforNorm;
cvf::Vec3d pointInPlane = ep1 + triNormal;
cvf::Plane plane;
plane.setFromPoints(ep1, pointInPlane, ep2);
return plane;
}
//--------------------------------------------------------------------------------------------------
// Clips the supplied triangles into new triangles returned in clippedTriangleVxes.
// New vertices have set isVxIdsNative = false and their vxIds is indices into triangleVxes
// The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex.
// This method will keep the faces provided, while added edges is marked with no face = 6
//--------------------------------------------------------------------------------------------------
void HexGridIntersectionTools::clipPlanarTrianglesWithInPlaneTriangle(const std::vector<cvf::Vec3d>& triangleVxes,
const std::vector<int>& cellFaceForEachTriangleEdge,
const cvf::Vec3d& tp1,
const cvf::Vec3d& tp2,
const cvf::Vec3d& tp3,
std::vector<cvf::Vec3d>* clippedTriangleVxes,
std::vector<int>* cellFaceForEachClippedTriangleEdge)
{
#define HT_NO_FACE 6
size_t triangleCount = triangleVxes.size() / 3;
// Creating a plane for each of the edges of the clipping triangle
std::array<cvf::Plane, 3> clipTrianglePlanes;
clipTrianglePlanes[0] = createPlaneFromEdgeAndPointInNormalDirection ( tp1, tp2, tp3 );
clipTrianglePlanes[1] = createPlaneFromEdgeAndPointInNormalDirection ( tp2, tp3, tp1 );
clipTrianglePlanes[2] = createPlaneFromEdgeAndPointInNormalDirection ( tp3, tp1, tp2 );
#define reserveSize 100
std::vector<cvf::Vec3d> currentInputTriangleVxes;
currentInputTriangleVxes.reserve(reserveSize);
std::vector<int> currentInputCellFaceForEachTriangleEdge;
currentInputCellFaceForEachTriangleEdge.reserve(reserveSize);
std::vector<cvf::Vec3d> currentOutputTriangleVxes;
currentOutputTriangleVxes.reserve(reserveSize);
std::vector<int> currentOutputCellFaceForEachTriangleEdge;
currentOutputCellFaceForEachTriangleEdge.reserve(reserveSize);
for( size_t tIdx = 0; tIdx < triangleCount; ++tIdx )
{
size_t triVxIdx = tIdx * 3;
currentInputTriangleVxes.clear();
currentInputCellFaceForEachTriangleEdge.clear();
currentOutputTriangleVxes.clear();
currentOutputCellFaceForEachTriangleEdge.clear();
currentOutputTriangleVxes.push_back(triangleVxes[triVxIdx + 0]);
currentOutputTriangleVxes.push_back(triangleVxes[triVxIdx + 1]);
currentOutputTriangleVxes.push_back(triangleVxes[triVxIdx + 2]);
currentOutputCellFaceForEachTriangleEdge.push_back(cellFaceForEachTriangleEdge[triVxIdx + 0]);
currentOutputCellFaceForEachTriangleEdge.push_back(cellFaceForEachTriangleEdge[triVxIdx + 1]);
currentOutputCellFaceForEachTriangleEdge.push_back(cellFaceForEachTriangleEdge[triVxIdx + 2]);
ClipVx newVx1;
newVx1.isVxIdsNative = false;
ClipVx newVx2;
newVx2.isVxIdsNative = false;
for ( int planeIdx = 0; planeIdx < 3; ++planeIdx )
{
currentInputTriangleVxes.swap(currentOutputTriangleVxes);
currentInputCellFaceForEachTriangleEdge.swap(currentOutputCellFaceForEachTriangleEdge);
currentOutputTriangleVxes.clear();
currentOutputCellFaceForEachTriangleEdge.clear();
size_t inTriangleCount = currentInputTriangleVxes.size()/3;
for ( size_t inTrIdx = 0; inTrIdx < inTriangleCount ; ++inTrIdx )
{
size_t inTriVxIdx = inTrIdx * 3;
bool isMostVxesOnPositiveSide = false;
bool isIntersectingPlane = planeTriangleIntersection(clipTrianglePlanes[planeIdx],
currentInputTriangleVxes[inTriVxIdx + 0], inTriVxIdx + 0,
currentInputTriangleVxes[inTriVxIdx + 1], inTriVxIdx + 1,
currentInputTriangleVxes[inTriVxIdx + 2], inTriVxIdx + 2,
&newVx1, &newVx2, &isMostVxesOnPositiveSide);
if ( !isIntersectingPlane)
{
// All on negative side: Discard triangle
if (!isMostVxesOnPositiveSide)
{
continue;
}
else // All on positive side: keep all
{
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[inTriVxIdx + 0]);
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[inTriVxIdx + 1]);
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[inTriVxIdx + 2]);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[inTriVxIdx + 0]);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[inTriVxIdx + 1]);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[inTriVxIdx + 2]);
}
}
else // intersecting
{
if ( isMostVxesOnPositiveSide )
{
// We need the Quad
currentOutputTriangleVxes.push_back(newVx2.vx);
currentOutputTriangleVxes.push_back(newVx1.vx);
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx1.clippedEdgeVx2Id]);
currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx1.clippedEdgeVx1Id]);
currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE);
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx1.clippedEdgeVx2Id]);
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx2.clippedEdgeVx2Id]);
currentOutputTriangleVxes.push_back(newVx2.vx);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx1.clippedEdgeVx2Id]);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx2.clippedEdgeVx2Id]);
currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE);
}
else
{
currentOutputTriangleVxes.push_back(newVx1.vx);
currentOutputTriangleVxes.push_back(newVx2.vx);
currentOutputTriangleVxes.push_back(currentInputTriangleVxes[newVx1.clippedEdgeVx1Id]);
currentOutputCellFaceForEachTriangleEdge.push_back(HT_NO_FACE);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx2.clippedEdgeVx2Id]);
currentOutputCellFaceForEachTriangleEdge.push_back(currentInputCellFaceForEachTriangleEdge[newVx1.clippedEdgeVx1Id]);
}
}
}
}
// Append the result of the completely clipped triangle to the output
clippedTriangleVxes->insert(clippedTriangleVxes->end(), currentOutputTriangleVxes.begin(), currentOutputTriangleVxes.end());
cellFaceForEachClippedTriangleEdge->insert(cellFaceForEachClippedTriangleEdge->end(), currentOutputCellFaceForEachTriangleEdge.begin(), currentOutputCellFaceForEachTriangleEdge.end());
}
}
//--------------------------------------------------------------------------------------------------
/// Will return the intersection point. If the plane is outside the line, it returns the closest line endpoint
//--------------------------------------------------------------------------------------------------
cvf::Vec3d HexGridIntersectionTools::planeLineIntersectionForMC(const cvf::Plane& plane, const cvf::Vec3d& p1, const cvf::Vec3d& p2, double* normalizedDistFromP1)
{
// From http://local.wasp.uwa.edu.au/~pbourke/geometry/planeline/
//
// P1 (x1,y1,z1) and P2 (x2,y2,z2)
//
// P = P1 + u (P2 - P1)
//
// A*x1 + B*y1 + C*z1 + D
// u = ---------------------------------
// A*(x1-x2) + B*(y1-y2) + C*(z1-z2)
CVF_TIGHT_ASSERT(normalizedDistFromP1);
const cvf::Vec3d v = p2 - p1;
(*normalizedDistFromP1) = 0.0;
double denominator = -(plane.A()*v.x() + plane.B()*v.y() + plane.C()*v.z());
if (denominator != 0)
{
double u = (plane.A()*p1.x() + plane.B()*p1.y() + plane.C()*p1.z() + plane.D()) / denominator;
(*normalizedDistFromP1) = u;
if (u > 0.0 && u < 1.0)
{
return (p1 + u*v);
}
else
{
if (u >= 1.0)
{
return p2;
}
else
{
return p1;
}
}
}
else
{
return p1;
}
}
//--------------------------------------------------------------------------------------------------
/// Based on description and implementation from Paul Bourke:
///
/// http://paulbourke.net/geometry/polygonise/
///
/// Note that the element is turned inside-out compared to what we use elsewhere in caf/ResInsight
/// So the winding of all the sides are opposite.
/// 4-----4------5
/// /| /| k POS_I = 0
/// 7 8 5 9 | NEG_I = 1
/// / | / | | POS_J = 2
/// 7------6-----6 | | NEG_J = 3
/// | 0-----0--|---1 *------i POS_K = 4
/// 11 / 10 / / NEG_K = 5
/// | 3 | 1 / NO_FACE = 6
/// |/ |/ j
/// 3------2-----2
///
// The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex.
//--------------------------------------------------------------------------------------------------
int HexGridIntersectionTools::planeHexIntersectionMC(const cvf::Plane& plane,
const cvf::Vec3d cell[8],
const size_t hexCornersIds[8],
std::vector<ClipVx>* triangleVxes,
std::vector<int>* cellFaceForEachTriangleEdge)
{
static const cvf::uint cubeIdxToCutEdgeBitfield[256] =
{
0x0, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,
0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,
0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,
0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,
0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c,
0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,
0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac,
0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,
0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c,
0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,
0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc,
0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,
0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c,
0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,
0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc,
0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,
0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,
0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,
0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,
0x15c, 0x55, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650,
0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc,
0x2fc, 0x3f5, 0xff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0,
0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c,
0x36c, 0x265, 0x16f, 0x66, 0x76a, 0x663, 0x569, 0x460,
0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac,
0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa, 0x1a3, 0x2a9, 0x3a0,
0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c,
0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33, 0x339, 0x230,
0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c,
0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99, 0x190,
0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c,
0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0
};
static const int cubeIdxToTriangleIndices[256][16] =
{
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 },
{ 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 },
{ 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 },
{ 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 },
{ 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 },
{ 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 },
{ 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 },
{ 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 },
{ 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 },
{ 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 },
{ 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 },
{ 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 },
{ 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 },
{ 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 },
{ 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 },
{ 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 },
{ 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 },
{ 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 },
{ 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 },
{ 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 },
{ 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 },
{ 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 },
{ 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 },
{ 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 },
{ 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 },
{ 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 },
{ 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 },
{ 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 },
{ 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 },
{ 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 },
{ 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 },
{ 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 },
{ 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 },
{ 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 },
{ 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 },
{ 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 },
{ 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 },
{ 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 },
{ 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 },
{ 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 },
{ 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 },
{ 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 },
{ 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 },
{ 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 },
{ 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 },
{ 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 },
{ 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 },
{ 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 },
{ 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 },
{ 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 },
{ 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 },
{ 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 },
{ 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 },
{ 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
{ 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 },
{ 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 },
{ 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 },
{ 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 },
{ 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 },
{ 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 },
{ 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 },
{ 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 },
{ 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 },
{ 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 },
{ 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 },
{ 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 },
{ 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 },
{ 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 },
{ 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 },
{ 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 },
{ 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 },
{ 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 },
{ 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 },
{ 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 },
{ 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 },
{ 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 },
{ 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 },
{ 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 },
{ 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 },
{ 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 },
{ 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 },
{ 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 },
{ 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 },
{ 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 },
{ 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 },
{ 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 },
{ 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 },
{ 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 },
{ 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 },
{ 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 },
{ 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 },
{ 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 },
{ 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 },
{ 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 },
{ 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 },
{ 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 },
{ 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 },
{ 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 },
{ 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 },
{ 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 },
{ 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 },
{ 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 },
{ 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 },
{ 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 },
{ 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 },
{ 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 },
{ 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 },
{ 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 },
{ 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 },
{ 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 },
{ 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 },
{ 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 },
{ 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 },
{ 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 },
{ 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 },
{ 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 },
{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }
};
static const int edgeTable[12][2] =
{
{0, 1},
{1, 2},
{2, 3},
{3, 0},
{4, 5},
{5, 6},
{6, 7},
{7, 4},
{0, 4},
{1, 5},
{2, 6},
{3, 7}
};
int cubeIndex = 0;
if (plane.distanceSquared(cell[0]) < 0) cubeIndex |= 1;
if (plane.distanceSquared(cell[1]) < 0) cubeIndex |= 2;
if (plane.distanceSquared(cell[2]) < 0) cubeIndex |= 4;
if (plane.distanceSquared(cell[3]) < 0) cubeIndex |= 8;
if (plane.distanceSquared(cell[4]) < 0) cubeIndex |= 16;
if (plane.distanceSquared(cell[5]) < 0) cubeIndex |= 32;
if (plane.distanceSquared(cell[6]) < 0) cubeIndex |= 64;
if (plane.distanceSquared(cell[7]) < 0) cubeIndex |= 128;
if (cubeIdxToCutEdgeBitfield[cubeIndex] == 0)
{
return 0;
}
cvf::Vec3d edgeIntersections[12];
double normDistAlongEdge[12];
// Compute vertex coordinates on the edges where we have intersections
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 1) edgeIntersections[0] = planeLineIntersectionForMC(plane, cell[0], cell[1], &normDistAlongEdge[0]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 2) edgeIntersections[1] = planeLineIntersectionForMC(plane, cell[1], cell[2], &normDistAlongEdge[1]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 4) edgeIntersections[2] = planeLineIntersectionForMC(plane, cell[2], cell[3], &normDistAlongEdge[2]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 8) edgeIntersections[3] = planeLineIntersectionForMC(plane, cell[3], cell[0], &normDistAlongEdge[3]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 16) edgeIntersections[4] = planeLineIntersectionForMC(plane, cell[4], cell[5], &normDistAlongEdge[4]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 32) edgeIntersections[5] = planeLineIntersectionForMC(plane, cell[5], cell[6], &normDistAlongEdge[5]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 64) edgeIntersections[6] = planeLineIntersectionForMC(plane, cell[6], cell[7], &normDistAlongEdge[6]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 128) edgeIntersections[7] = planeLineIntersectionForMC(plane, cell[7], cell[4], &normDistAlongEdge[7]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 256) edgeIntersections[8] = planeLineIntersectionForMC(plane, cell[0], cell[4], &normDistAlongEdge[8]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 512) edgeIntersections[9] = planeLineIntersectionForMC(plane, cell[1], cell[5], &normDistAlongEdge[9]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 1024) edgeIntersections[10] = planeLineIntersectionForMC(plane, cell[2], cell[6], &normDistAlongEdge[10]);
if (cubeIdxToCutEdgeBitfield[cubeIndex] & 2048) edgeIntersections[11] = planeLineIntersectionForMC(plane, cell[3], cell[7], &normDistAlongEdge[11]);
// Create the triangles
const int* triangleIndicesToCubeEdges = cubeIdxToTriangleIndices[cubeIndex];
cvf::uint triangleVxIdx = 0;
int cubeEdgeIdx = triangleIndicesToCubeEdges[triangleVxIdx];
while (cubeEdgeIdx != -1)
{
ClipVx cvx;
cvx.vx = edgeIntersections[cubeEdgeIdx];
cvx.normDistFromEdgeVx1 = normDistAlongEdge[cubeEdgeIdx];
cvx.clippedEdgeVx1Id = hexCornersIds[edgeTable[cubeEdgeIdx][0]];
cvx.clippedEdgeVx2Id = hexCornersIds[edgeTable[cubeEdgeIdx][1]];
(*triangleVxes).push_back(cvx);
++triangleVxIdx;
cubeEdgeIdx = triangleIndicesToCubeEdges[triangleVxIdx];
}
cvf::uint triangleCount = triangleVxIdx / 3;
static const int edgeEdgeCutsToCellFace[12][12] = {
// 0 1 2 3 4 5 6 7 8 9 10 11
{ 6, 5, 5, 5, 3, 6, 6, 6, 3, 3, 6, 6 }, // 0
{ 5, 6, 5, 5, 6, 0, 6, 6, 6, 0, 0, 6 }, // 1 POS_I = 0
{ 5, 5, 6, 5, 6, 6, 2, 6, 6, 6, 2, 2 }, // 2 NEG_I = 1
{ 5, 5, 5, 6, 6, 6, 6, 1, 1, 6, 6, 1 }, // 3 POS_J = 2
{ 3, 6, 6, 6, 6, 4, 4, 4, 3, 3, 6, 6 }, // 4 NEG_J = 3
{ 6, 0, 6, 6, 4, 6, 4, 4, 6, 0, 0, 6 }, // 5 POS_K = 4
{ 6, 6, 2, 6, 4, 4, 6, 4, 6, 6, 2, 2 }, // 6 NEG_K = 5
{ 6, 6, 6, 1, 4, 4, 4, 6, 1, 6, 6, 1 }, // 7 NO_FACE = 6
{ 3, 6, 6, 1, 3, 6, 6, 1, 6, 3, 6, 1 }, // 8
{ 3, 0, 6, 6, 3, 0, 6, 6, 3, 6, 0, 6 }, // 9
{ 6, 0, 2, 6, 6, 0, 2, 6, 6, 0, 6, 2 }, // 10
{ 6, 6, 2, 1, 6, 6, 2, 1, 1, 6, 2, 6 } // 11
};
(*cellFaceForEachTriangleEdge).clear();
(*cellFaceForEachTriangleEdge).resize(triangleVxIdx, 6);
for (cvf::uint tIdx = 0; tIdx < triangleCount; ++tIdx)
{
cvf::uint triVxIdx = 3 * tIdx;
int cubeEdgeIdx1 = triangleIndicesToCubeEdges[triVxIdx];
int cubeEdgeIdx2 = triangleIndicesToCubeEdges[triVxIdx + 1];
int cubeEdgeIdx3 = triangleIndicesToCubeEdges[triVxIdx + 2];
(*cellFaceForEachTriangleEdge)[triVxIdx + 0] = edgeEdgeCutsToCellFace[cubeEdgeIdx1][cubeEdgeIdx2];
(*cellFaceForEachTriangleEdge)[triVxIdx + 1] = edgeEdgeCutsToCellFace[cubeEdgeIdx2][cubeEdgeIdx3];
(*cellFaceForEachTriangleEdge)[triVxIdx + 2] = edgeEdgeCutsToCellFace[cubeEdgeIdx3][cubeEdgeIdx1];
}
#if 0
// Calculate what triangle edges are representing the cut of a cell face
// Do this by counting the times two specific cube edges are used for a triangle edge.
// Internal edges will have a count of 2, while external edges only 1
(*isTriEdgeCellContour).clear();
(*isTriEdgeCellContour).resize(triangleVxIdx);
int triangleEdgeCount[12][12] = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
};
(*isTriEdgeCellContour).clear();
(*isTriEdgeCellContour).resize(triangleVxIdx, false);
for (cvf::uint tIdx = 0; tIdx < triangleCount; ++tIdx)
{
cvf::uint triVxIdx = 3 * tIdx;
int cubeEdgeIdx1 = triangleIndicesToCubeEdges[triVxIdx];
int cubeEdgeIdx2 = triangleIndicesToCubeEdges[triVxIdx + 1];
int cubeEdgeIdx3 = triangleIndicesToCubeEdges[triVxIdx + 2];
cubeEdgeIdx1 < cubeEdgeIdx2 ? ++triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx2] : ++triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx1];
cubeEdgeIdx2 < cubeEdgeIdx3 ? ++triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx3] : ++triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx2];
cubeEdgeIdx3 < cubeEdgeIdx1 ? ++triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx1] : ++triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx3];
}
for (cvf::uint tIdx = 0; tIdx < triangleCount; ++tIdx)
{
cvf::uint triVxIdx = 3 * tIdx;
int cubeEdgeIdx1 = triangleIndicesToCubeEdges[triVxIdx];
int cubeEdgeIdx2 = triangleIndicesToCubeEdges[triVxIdx + 1];
int cubeEdgeIdx3 = triangleIndicesToCubeEdges[triVxIdx + 2];
// We have a contour if the count is exactly 1.
(*isTriEdgeCellContour)[triVxIdx + 0] = (1 == (cubeEdgeIdx1 < cubeEdgeIdx2 ? triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx2] : triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx1]));
(*isTriEdgeCellContour)[triVxIdx + 1] = (1 == (cubeEdgeIdx2 < cubeEdgeIdx3 ? triangleEdgeCount[cubeEdgeIdx2][cubeEdgeIdx3] : triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx2]));
(*isTriEdgeCellContour)[triVxIdx + 2] = (1 == (cubeEdgeIdx3 < cubeEdgeIdx1 ? triangleEdgeCount[cubeEdgeIdx3][cubeEdgeIdx1] : triangleEdgeCount[cubeEdgeIdx1][cubeEdgeIdx3]));
}
#endif
return triangleCount;
}
//--------------------------------------------------------------------------------------------------
/// Based on description and implementation from Paul Bourke:
///
/// http://paulbourke.net/geometry/polygonise/
///
/// Note that the element is turned inside-out compared to what we use elsewhere in caf/ResInsight
/// So the winding of all the sides are opposite.
/// 4-----4------5
/// /| /| k POS_I = 0
/// 7 8 5 9 | NEG_I = 1
/// / | / | | POS_J = 2
/// 7------6-----6 | | NEG_J = 3
/// | 0-----0--|---1 *------i POS_K = 4
/// 11 / 10 / / NEG_K = 5
/// | 3 | 1 / NO_FACE = 6
/// |/ |/ j
/// 3------2-----2
///
// The cellFaceForEachTriangleEdge refer to the edge after the corresponding triangle vertex.
/*
Based on description and implementation from Paul Bourke:
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
Polygonise a tetrahedron given its vertices within a cube
This is an alternative algorithm to polygonisegrid.
It results in a smoother surface but more triangular facets.
+ 0 + 0
/|\ /|\
/ | \ / | \
/ | \ / | \
/ | \ / | \
/ | \ / 2 | \
/ | \ / __--+_ \
+-------------+ 1 3 +--__ --_ \
3 \ | / ---__ --_\
\ | / ---__-\
\ | / --+ 1
\ | /
\ | /
\|/ 2 is behind 1 and 3
+ 2
Build six tets from a cube to make sure the split direction is equal for opposite sides.
Surface normals are pointing outward.
See following comment is taken from http://www.iue.tuwien.ac.at/phd/wessner/node32.html
The decompositions of a cube into five tetrahedra yields an orientation switch of two opposite diagonal face edges of the cube.
Due to this fact, the tessellation of one cube, as part of a larger cubic grid, forces a particular tessellation of all neighboring cubes to guarantee a conformal mesh.
This means that, if such five-decompositions cubes are stacked together to a chain, the mesh of each cube must be rotated by an angle of 90 deg
The tessellation makes sure opposite faces are divided along the same line
See figure http://www.ics.uci.edu/~eppstein/projects/tetra/
4, 5, 6, 0
0, 1, 5, 6
0, 2, 1, 6
4, 6, 7, 0
0, 7, 3, 6
0, 3, 2, 6
Introduces the additional diagonal edges in the Hex from 12 up to and including 18:
0 2 // 12 NEG_K
0 5 // 13 NEG_J
1 6 // 14 POS_I
3 6 // 15 POS_J
0 7 // 16 NEG_I
4 6 // 17 POS_K
0 6 // 18 Internal Diagonal
/// 4-----4------5
/// /| /| k POS_I = 0
/// 7 8 17 5 9 | NEG_I = 1
/// / | 13 / | | POS_J = 2
/// 7------6-----6 14| | NEG_J = 3
/// |16 0-----0--|---1 *------i POS_K = 4
/// 11 / 15 10 / / NEG_K = 5
/// | 3 12 | 1 / NO_FACE = 6
/// |/ |/ j
/// 3------2-----2
*/
//--------------------------------------------------------------------------------------------------
int HexGridIntersectionTools::planeHexIntersectionMCTet( const cvf::Plane& plane,
const cvf::Vec3d cell[8],
const size_t hexCornersIds[8],
std::vector<ClipVx>* triangleVxes,
std::vector<int>* cellFaceForEachTriangleEdge )
{
std::array<double, 8> cellCornerSqDistToPlane =
{
plane.distanceSquared( cell[0] ),
plane.distanceSquared( cell[1] ),
plane.distanceSquared( cell[2] ),
plane.distanceSquared( cell[3] ),
plane.distanceSquared( cell[4] ),
plane.distanceSquared( cell[5] ),
plane.distanceSquared( cell[6] ),
plane.distanceSquared( cell[7] ),
};
int cubeIndex = 0;
if (cellCornerSqDistToPlane[0] < 0) cubeIndex |= 1;
if (cellCornerSqDistToPlane[1] < 0) cubeIndex |= 2;
if (cellCornerSqDistToPlane[2] < 0) cubeIndex |= 4;
if (cellCornerSqDistToPlane[3] < 0) cubeIndex |= 8;
if (cellCornerSqDistToPlane[4] < 0) cubeIndex |= 16;
if (cellCornerSqDistToPlane[5] < 0) cubeIndex |= 32;
if (cellCornerSqDistToPlane[6] < 0) cubeIndex |= 64;
if (cellCornerSqDistToPlane[7] < 0) cubeIndex |= 128;
if (cubeIndex == 0 || cubeIndex == 255) return 0;
int tetCount = 0;
tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 4, 5, 6, 0 }, triangleVxes, cellFaceForEachTriangleEdge );
tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 1, 5, 6 }, triangleVxes, cellFaceForEachTriangleEdge );
tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 2, 1, 6 }, triangleVxes, cellFaceForEachTriangleEdge );
tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 4, 6, 7, 0 }, triangleVxes, cellFaceForEachTriangleEdge );
tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 7, 3, 6 }, triangleVxes, cellFaceForEachTriangleEdge );
tetCount += planeMcTetIntersection(plane, cell, hexCornersIds, cellCornerSqDistToPlane.data(), { 0, 3, 2, 6 }, triangleVxes, cellFaceForEachTriangleEdge );
return tetCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
cvf::uint HexGridIntersectionTools::planeMcTetIntersection( const cvf::Plane& plane,
const cvf::Vec3d hexCell[8],
const size_t hexCornersIds[8],
const double cornerDistToPlane[8],
const std::array<int, 4> & tetCell,
std::vector<ClipVx>* triangleVxes,
std::vector<int>* cellFaceForEachTriangleEdge )
{
static const int edgeEdgeCutsToCellFace[19][19] = {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4--------------4---------------5
{ 6, 5, 5, 5, 3, 6, 6, 6, 3, 3, 6, 6, 5, 3, 6, 6, 6, 6, 6 }, // 0 /|\__ __//|
{ 5, 6, 5, 5, 6, 0, 6, 6, 6, 0, 0, 6, 5, 6, 0, 6, 6, 6, 6 }, // 1 POS_I = 0 / | \___ _/ / |
{ 5, 5, 6, 5, 6, 6, 2, 6, 6, 6, 2, 2, 5, 6, 6, 2, 6, 6, 6 }, // 2 NEG_I = 1 7 | \__ __/ / | k
{ 5, 5, 5, 6, 6, 6, 6, 1, 1, 6, 6, 1, 5, 6, 6, 6, 1, 6, 6 }, // 3 POS_J = 2 / | 17___ _/ 5 | |
{ 3, 6, 6, 6, 6, 4, 4, 4, 3, 3, 6, 6, 6, 3, 6, 6, 6, 4, 6 }, // 4 NEG_J = 3 / 8 \___ / 9 |
{ 6, 0, 6, 6, 4, 6, 4, 4, 6, 0, 0, 6, 6, 6, 0, 6, 6, 4, 6 }, // 5 POS_K = 4 / | __/ \___ / | |
{ 6, 6, 2, 6, 4, 4, 6, 4, 6, 6, 2, 2, 6, 6, 6, 2, 6, 4, 6 }, // 6 NEG_K = 5 7---------------6--------------6 | *------i
{ 6, 6, 6, 1, 4, 4, 4, 6, 1, 6, 6, 1, 6, 6, 6, 6, 1, 4, 6 }, // 7 NO_FACE = 6 |\_ | __13 ____/_/|\_ | /
{ 3, 6, 6, 1, 3, 6, 6, 1, 6, 3, 6, 1, 6, 3, 6, 6, 1, 6, 6 }, // 8 | 16 | __/ _18_/ __/ | 14 | /
{ 3, 0, 6, 6, 3, 0, 6, 6, 3, 6, 0, 6, 6, 3, 0, 6, 6, 6, 6 }, // 9 | \_ | __/____/ _/ | \_ | j
{ 6, 0, 2, 6, 6, 0, 2, 6, 6, 0, 6, 2, 6, 6, 0, 2, 6, 6, 6 }, // 10 | \|__/__/ __/ | \|
{ 6, 6, 2, 1, 6, 6, 2, 1, 1, 6, 2, 6, 6, 6, 6, 2, 1, 6, 6 }, // 11 | 0-----------_/----0-----|------1
{ 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 12 11 / \__ __15 10 /
{ 3, 6, 6, 6, 3, 6, 6, 6, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 13 | / \_ _/ | /
{ 6, 0, 6, 6, 6, 0, 6, 6, 6, 0, 0, 6, 6, 6, 6, 6, 6, 6, 6 }, // 14 | 3 __/ \___ | 1
{ 6, 6, 2, 6, 6, 6, 2, 6, 6, 6, 2, 2, 6, 6, 6, 6, 6, 6, 6 }, // 15 | / __/ 12__ | /
{ 6, 6, 6, 1, 6, 6, 6, 1, 1, 6, 6, 1, 6, 6, 6, 6, 6, 6, 6 }, // 16 | / __/ \___ | /
{ 6, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 17 |/__/ \___|/
{ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, // 18 3---------------2--------------2
};
static const int cellCornerCellCornerToEdge[8][8] = {
// 0 1 2 3 4 5 6 7
{ -1, 0, 12, 3, 8, 13, 18, 16 }, // 0
{ 0, -1, 1, -1, -1, 9, 14, -1 }, // 1
{ 12, 1, -1, 2, -1, -1, 10, -1 }, // 2
{ 3, -1, 2, -1, -1, -1, 15, 11 }, // 3
{ 8, -1, -1, -1, -1, 4, 17, 7 }, // 4
{ 13, 9, -1, -1, 4, -1, 5, -1 }, // 5
{ 18, 14, 10, 15, 17, 5, -1, 6 }, // 6
{ 16, -1, -1, 11, 7, -1, 6, -1 }, // 7
};
cvf::uint ntri = 0;
int triindex = 0;
if( cornerDistToPlane[tetCell[0]] < 0 ) triindex |= 1;
if( cornerDistToPlane[tetCell[1]] < 0 ) triindex |= 2;
if( cornerDistToPlane[tetCell[2]] < 0 ) triindex |= 4;
if( cornerDistToPlane[tetCell[3]] < 0 ) triindex |= 8;
auto clipEdgeFunc = [&]( int hexCornerIdx0, int hexCornerIdx1 )
{
ClipVx cvx;
cvx.vx = planeLineIntersectionForMC( plane, hexCell[hexCornerIdx0], hexCell[hexCornerIdx1], &cvx.normDistFromEdgeVx1 );
cvx.clippedEdgeVx1Id = hexCornersIds[hexCornerIdx0];
cvx.clippedEdgeVx2Id = hexCornersIds[hexCornerIdx1];
return cvx;
};
auto addCellFaceStatusForTriangleEdges = [&]( int e11, int e12,
int e21, int e22,
int e31, int e32)
{
int cutEdge1 = cellCornerCellCornerToEdge[e11][e12];
int cutEdge2 = cellCornerCellCornerToEdge[e21][e22];
int cutEdge3 = cellCornerCellCornerToEdge[e31][e32];
CVF_ASSERT(cutEdge1 >= 0);
CVF_ASSERT(cutEdge2 >= 0);
CVF_ASSERT(cutEdge3 >= 0);
cellFaceForEachTriangleEdge->emplace_back( edgeEdgeCutsToCellFace[cutEdge1][cutEdge2] );
cellFaceForEachTriangleEdge->emplace_back( edgeEdgeCutsToCellFace[cutEdge2][cutEdge3] );
cellFaceForEachTriangleEdge->emplace_back( edgeEdgeCutsToCellFace[cutEdge3][cutEdge1] );
};
switch( triindex ) {
case 0x00:
case 0x0F:
break;
case 0x0E:
case 0x01:
{
triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[1] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[2] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[3] ) );
addCellFaceStatusForTriangleEdges(tetCell[0], tetCell[1],
tetCell[0], tetCell[2],
tetCell[0], tetCell[3]);
ntri++;
}
break;
case 0x0D:
case 0x02:
{
triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[0] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[3] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[2] ) );
addCellFaceStatusForTriangleEdges( tetCell[1], tetCell[0],
tetCell[1], tetCell[3],
tetCell[1], tetCell[2] );
ntri++;
}
break;
case 0x0C:
case 0x03:
{
triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[3] ) );
ClipVx vx1 = clipEdgeFunc( tetCell[0], tetCell[2] );
triangleVxes->push_back( vx1 );
ClipVx vx2 = clipEdgeFunc( tetCell[1], tetCell[3] );
triangleVxes->push_back( vx2 );
addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[3],
tetCell[0], tetCell[2],
tetCell[1], tetCell[3] );
ntri++;
triangleVxes->push_back( vx2 );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[2] ) );
triangleVxes->push_back( vx1 );
addCellFaceStatusForTriangleEdges( tetCell[1], tetCell[3],
tetCell[1], tetCell[2],
tetCell[0], tetCell[2] );
ntri++;
}
break;
case 0x0B:
case 0x04:
{
triangleVxes->emplace_back( clipEdgeFunc( tetCell[2], tetCell[0] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[2], tetCell[1] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[2], tetCell[3] ) );
addCellFaceStatusForTriangleEdges( tetCell[2], tetCell[0],
tetCell[2], tetCell[1],
tetCell[2], tetCell[3] );
ntri++;
}
break;
case 0x0A:
case 0x05:
{
ClipVx vx0 = clipEdgeFunc( tetCell[0], tetCell[1] );
triangleVxes->push_back( vx0 );
ClipVx vx1 = clipEdgeFunc( tetCell[2], tetCell[3] );
triangleVxes->push_back( vx1 );
ClipVx vx2 = clipEdgeFunc( tetCell[0], tetCell[3] );
triangleVxes->push_back( vx2 );
addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1],
tetCell[2], tetCell[3],
tetCell[0], tetCell[3] );
ntri++;
triangleVxes->push_back( vx0 );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[1], tetCell[2] ) );
triangleVxes->push_back( vx1 );
addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1],
tetCell[1], tetCell[2],
tetCell[2], tetCell[3] );
ntri++;
}
break;
case 0x09:
case 0x06:
{
ClipVx vx0 = clipEdgeFunc( tetCell[0], tetCell[1] );
triangleVxes->push_back( vx0 );
ClipVx vx1 = clipEdgeFunc( tetCell[1], tetCell[3] );
triangleVxes->push_back( vx1 );
ClipVx vx2 = clipEdgeFunc( tetCell[2], tetCell[3] );
triangleVxes->push_back( vx2 );
addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1],
tetCell[1], tetCell[3],
tetCell[2], tetCell[3] );
ntri++;
triangleVxes->push_back( vx0 );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[0], tetCell[2] ) );
triangleVxes->push_back( vx2 );
addCellFaceStatusForTriangleEdges( tetCell[0], tetCell[1],
tetCell[0], tetCell[2],
tetCell[2], tetCell[3] );
ntri++;
}
break;
case 0x07:
case 0x08:
{
triangleVxes->emplace_back( clipEdgeFunc( tetCell[3], tetCell[0] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[3], tetCell[2] ) );
triangleVxes->emplace_back( clipEdgeFunc( tetCell[3], tetCell[1] ) );
addCellFaceStatusForTriangleEdges( tetCell[3], tetCell[0],
tetCell[3], tetCell[2],
tetCell[3], tetCell[1] );
ntri++;
}
break;
}
return ntri;
}
} // namespace cvf