ResInsight/ApplicationCode/ReservoirDataModel/RigStimPlanUpscalingCalc.cpp

356 lines
15 KiB
C++
Raw Blame History

#include "RigStimPlanUpscalingCalc.h"
#include "RigMainGrid.h"
#include "RimEclipseCase.h"
#include "RigFractureTransCalc.h"
#include "RigEclipseCaseData.h"
#include "RigCellGeometryTools.h"
#include "RigStimPlanFracTemplateCell.h"
#include "RiaLogging.h"
#include "RigFractureGrid.h"
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigStimPlanUpscalingCalc::RigStimPlanUpscalingCalc(RimEclipseCase* caseToApply, RimFracture* fracture)
{
m_case = caseToApply;
m_fracture = fracture;
//Set correct unit system:
RigEclipseCaseData::UnitsType caseUnit = m_case->eclipseCaseData()->unitsType();
if (caseUnit == RigEclipseCaseData::UNITS_METRIC)
{
RiaLogging::debug(QString("Calculating transmissibilities in metric units"));
m_unitForCalculation = RimDefines::UNITS_METRIC;
}
else if (caseUnit == RigEclipseCaseData::UNITS_FIELD)
{
RiaLogging::debug(QString("Calculating transmissibilities in field units"));
m_unitForCalculation = RimDefines::UNITS_FIELD;
}
else
{
//TODO: How to handle lab units for eclipse case?
RiaLogging::error(QString("Unit system for case not supported for fracture export."));
RiaLogging::error(QString("Export will be in metric units, but results might be wrong."));
m_unitForCalculation = RimDefines::UNITS_METRIC;
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::pair<double, double> RigStimPlanUpscalingCalc::flowAcrossLayersUpscaling(QString resultName, QString resultUnit, size_t timeStepIndex, RimDefines::UnitSystem unitSystem, size_t eclipseCellIndex)
{
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->attachedFractureDefinition()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->attachedFractureDefinition());
}
else return std::make_pair(cvf::UNDEFINED_DOUBLE, cvf::UNDEFINED_DOUBLE);
std::vector<RigStimPlanFracTemplateCell> stimPlanCells = fracTemplateStimPlan->fractureGrid().fractureCells();
cvf::Vec3d localX, localY, localZ; //Not used in calculation here, but needed for function to find planCellPolygons
std::vector<std::vector<cvf::Vec3d> > planeCellPolygons;
const RigMainGrid* mainGrid = m_case->eclipseCaseData()->mainGrid();
cvf::Vec3d hexCorners[8];
mainGrid->cellCornerVertices(eclipseCellIndex, hexCorners);
bool isPlanIntersected = RigFractureTransCalc::planeCellIntersectionPolygons(hexCorners, m_fracture->transformMatrix(), planeCellPolygons);
if (!isPlanIntersected || planeCellPolygons.size() == 0) return std::make_pair(cvf::UNDEFINED_DOUBLE, cvf::UNDEFINED_DOUBLE);
//Transform planCell polygon(s) and averageZdirection to x/y coordinate system (where fracturePolygon/stimPlan mesh already is located)
cvf::Mat4f invertedTransMatrix = m_fracture->transformMatrix().getInverted();
for (std::vector<cvf::Vec3d> & planeCellPolygon : planeCellPolygons)
{
for (cvf::Vec3d& v : planeCellPolygon)
{
v.transformPoint(static_cast<cvf::Mat4d>(invertedTransMatrix));
}
}
cvf::Vec3d directionAcrossLayers;
cvf::Vec3d directionAlongLayers;
directionAcrossLayers = cvf::Vec3d(0.0, -1.0, 0.0);
directionAlongLayers = cvf::Vec3d(1.0, 0.0, 0.0);
std::vector<cvf::Vec3f> fracPolygon = m_fracture->attachedFractureDefinition()->fracturePolygon(unitSystem);
std::vector<std::vector<cvf::Vec3d> > polygonsDescribingFractureInCell;
std::vector<double> upscaledConductivitiesHA;
std::vector<double> upscaledConductivitiesAH;
for (std::vector<cvf::Vec3d> planeCellPolygon : planeCellPolygons)
{
double condHA = computeHAupscale(fracTemplateStimPlan, stimPlanCells, planeCellPolygon, directionAlongLayers, directionAcrossLayers);
upscaledConductivitiesHA.push_back(condHA);
double condAH = computeAHupscale(fracTemplateStimPlan, stimPlanCells, planeCellPolygon, directionAlongLayers, directionAcrossLayers);
upscaledConductivitiesAH.push_back(condAH);
}
return std::make_pair(arithmeticAverage(upscaledConductivitiesHA), arithmeticAverage(upscaledConductivitiesAH));
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanUpscalingCalc::computeHAupscale(RimStimPlanFractureTemplate* fracTemplateStimPlan, std::vector<RigStimPlanFracTemplateCell> stimPlanCells, std::vector<cvf::Vec3d> planeCellPolygon, cvf::Vec3d directionAlongLayers, cvf::Vec3d directionAcrossLayers)
{
std::vector<double> DcolSum;
std::vector<double> lavgCol;
std::vector<double> CondHarmCol;
for (size_t j = 0; j < fracTemplateStimPlan->fractureGrid().iCellCount(); j++)
{
std::vector<double> conductivitiesInStimPlanCells;
std::vector<double> lengthsLiOfStimPlanCol;
std::vector<double> heightsDiOfStimPlanCells;
std::vector<RigStimPlanFracTemplateCell*> stimPlanCellsCol = getColOfStimPlanCells(stimPlanCells, j);
for (RigStimPlanFracTemplateCell* stimPlanCell : stimPlanCellsCol)
{
if (stimPlanCell->getConductivtyValue() > 1e-7)
{
std::vector<std::vector<cvf::Vec3d> >clippedStimPlanPolygons = RigCellGeometryTools::intersectPolygons(stimPlanCell->getPolygon(), planeCellPolygon);
if (clippedStimPlanPolygons.size() > 0)
{
for (auto clippedStimPlanPolygon : clippedStimPlanPolygons)
{
conductivitiesInStimPlanCells.push_back(stimPlanCell->getConductivtyValue());
lengthsLiOfStimPlanCol.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAlongLayers, clippedStimPlanPolygon));
heightsDiOfStimPlanCells.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAcrossLayers, clippedStimPlanPolygon));
}
}
}
}
//Regne ut average
double sumDiDivCondLi = 0.0;
double sumDi = 0.0;
double sumLiDi = 0.0;
for (size_t i = 0; i < conductivitiesInStimPlanCells.size(); i++)
{
sumDiDivCondLi += heightsDiOfStimPlanCells[i] / (conductivitiesInStimPlanCells[i] * lengthsLiOfStimPlanCol[i]);
sumDi += heightsDiOfStimPlanCells[i];
sumLiDi += heightsDiOfStimPlanCells[i] * lengthsLiOfStimPlanCol[i];
}
if (sumDiDivCondLi != 0)
{
DcolSum.push_back(sumDi);
double lAvgValue = sumLiDi / sumDi;
lavgCol.push_back(lAvgValue);
double harmMeanForCol = (sumDi / lAvgValue) * (1 / sumDiDivCondLi);
CondHarmCol.push_back(harmMeanForCol);
}
}
//Do arithmetic upscaling based on harmonic upscaled values for coloums
double sumCondHLiDivDi = 0.0;
double sumLi = 0.0;
double sumDiLi = 0.0;
for (int i = 0; i < CondHarmCol.size(); i++)
{
sumLi += lavgCol[i];
sumDiLi += DcolSum[i] * lavgCol[i];
sumCondHLiDivDi += CondHarmCol[i] * lavgCol[i] / DcolSum[i];
}
double Davg = sumDiLi / sumLi;
double condHA = (Davg / sumLi) * sumCondHLiDivDi;
return condHA;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanUpscalingCalc::computeAHupscale(RimStimPlanFractureTemplate* fracTemplateStimPlan, std::vector<RigStimPlanFracTemplateCell> stimPlanCells, std::vector<cvf::Vec3d> planeCellPolygon, cvf::Vec3d directionAlongLayers, cvf::Vec3d directionAcrossLayers)
{
std::vector<double> DrowAvg;
std::vector<double> liRowSum;
std::vector<double> CondAritRow;
for (size_t j = 0; j < fracTemplateStimPlan->fractureGrid().jCellCount(); j++)
{
std::vector<double> conductivitiesInStimPlanCells;
std::vector<double> lengthsLiOfStimPlanCol;
std::vector<double> heightsDiOfStimPlanCells;
std::vector<RigStimPlanFracTemplateCell*> stimPlanCellsCol = getRowOfStimPlanCells(stimPlanCells, j);
for (RigStimPlanFracTemplateCell* stimPlanCell : stimPlanCellsCol)
{
if (stimPlanCell->getConductivtyValue() > 1e-7)
{
std::vector<std::vector<cvf::Vec3d> >clippedStimPlanPolygons = RigCellGeometryTools::intersectPolygons(stimPlanCell->getPolygon(), planeCellPolygon);
if (clippedStimPlanPolygons.size() > 0)
{
for (auto clippedStimPlanPolygon : clippedStimPlanPolygons)
{
conductivitiesInStimPlanCells.push_back(stimPlanCell->getConductivtyValue());
lengthsLiOfStimPlanCol.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAlongLayers, clippedStimPlanPolygon));
heightsDiOfStimPlanCells.push_back(RigCellGeometryTools::polygonAreaWeightedLength(directionAcrossLayers, clippedStimPlanPolygon));
}
}
}
}
//Calculate sums needed for (arithmetic) average for coloum
double sumCondLiDivDi = 0.0;
double sumDi = 0.0;
double sumLiDi = 0.0;
double sumLi = 0.0;
for (size_t i = 0; i < conductivitiesInStimPlanCells.size(); i++)
{
sumCondLiDivDi += (conductivitiesInStimPlanCells[i] * lengthsLiOfStimPlanCol[i]) / heightsDiOfStimPlanCells[i];
sumDi += heightsDiOfStimPlanCells[i];
sumLiDi += heightsDiOfStimPlanCells[i] * lengthsLiOfStimPlanCol[i];
sumLi += lengthsLiOfStimPlanCol[i];
}
if (sumCondLiDivDi != 0)
{
//Calculating art avg
double dAvg = sumLiDi / sumLi;
DrowAvg.push_back(dAvg);
liRowSum.push_back(sumLi);
CondAritRow.push_back(dAvg / sumLi * sumCondLiDivDi);
}
}
//Do harmonic upscaling based on arithmetric upscaled values for coloums
double sumDiDivCondALi = 0.0;
double sumDi = 0.0;
double sumDiLi = 0.0;
for (size_t i = 0; i < CondAritRow.size(); i++)
{
sumDi += DrowAvg[i];
sumDiLi += DrowAvg[i] * liRowSum[i];
sumDiDivCondALi += DrowAvg[i] / (CondAritRow[i] * liRowSum[i]);
}
double Lavg = sumDiLi / sumDi;
double condAH = (sumDi / Lavg) * (1 / sumDiDivCondALi);
return condAH;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
double RigStimPlanUpscalingCalc::arithmeticAverage(std::vector<double> values)
{
if (values.size() == 0) return cvf::UNDEFINED_DOUBLE;
double sumValue = 0.0;
size_t numberOfValues = 0;
for (double value : values)
{
sumValue += value;
numberOfValues++;
}
return sumValue / numberOfValues;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigFracturedEclipseCellExportData> RigStimPlanUpscalingCalc::computeUpscaledPropertyFromStimPlan( QString resultName, QString resultUnit, size_t timeStepIndex)
{
std::vector<RigFracturedEclipseCellExportData> fracDataVec;
RimStimPlanFractureTemplate* fracTemplateStimPlan;
if (dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->attachedFractureDefinition()))
{
fracTemplateStimPlan = dynamic_cast<RimStimPlanFractureTemplate*>(m_fracture->attachedFractureDefinition());
}
else
{
return fracDataVec;
}
std::vector<std::vector<cvf::Vec3d> > stimPlanCellsAsPolygons;
std::vector<double> stimPlanParameterValues;
fracTemplateStimPlan->getStimPlanDataAsPolygonsAndValues(stimPlanCellsAsPolygons, stimPlanParameterValues, resultName, resultUnit, timeStepIndex);
//TODO: A lot of common code with function above... Can be cleaned up...?
std::vector<size_t> fracCells = m_fracture->getPotentiallyFracturedCells(m_case->eclipseCaseData()->mainGrid());
RifReaderInterface::PorosityModelResultType porosityModel = RifReaderInterface::MATRIX_RESULTS;
RimReservoirCellResultsStorage* gridCellResults = m_case->results(porosityModel);
RigActiveCellInfo* activeCellInfo = m_case->eclipseCaseData()->activeCellInfo(porosityModel);
for (size_t fracCell : fracCells)
{
//TODO: Lage ny classe for <20> holde upscaledData
RigFracturedEclipseCellExportData fracData;
fracData.reservoirCellIndex = fracCell;
std::pair<double, double> upscaledCondFlowAcrossLayers = flowAcrossLayersUpscaling(resultName, resultUnit, timeStepIndex, m_unitForCalculation, fracCell);
double upscaledStimPlanValueHA = upscaledCondFlowAcrossLayers.first;
double upscaledStimPlanValueAH = upscaledCondFlowAcrossLayers.second;
if (upscaledStimPlanValueHA != cvf::UNDEFINED_DOUBLE)
{
fracData.upscaledStimPlanValueHA = upscaledStimPlanValueHA;
fracData.upscaledStimPlanValueAH = upscaledStimPlanValueAH;
fracDataVec.push_back(fracData);
}
}
return fracDataVec;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigStimPlanFracTemplateCell*> RigStimPlanUpscalingCalc::getRowOfStimPlanCells(std::vector<RigStimPlanFracTemplateCell>& allStimPlanCells, size_t i)
{
std::vector<RigStimPlanFracTemplateCell*> stimPlanCellRow;
for (RigStimPlanFracTemplateCell stimPlanCell : allStimPlanCells)
{
if (stimPlanCell.getI() == i)
{
stimPlanCellRow.push_back(&stimPlanCell);
}
}
return stimPlanCellRow;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
std::vector<RigStimPlanFracTemplateCell*> RigStimPlanUpscalingCalc::getColOfStimPlanCells(std::vector<RigStimPlanFracTemplateCell>& allStimPlanCells, size_t j)
{
std::vector<RigStimPlanFracTemplateCell*> stimPlanCellCol;
for (RigStimPlanFracTemplateCell stimPlanCell : allStimPlanCells)
{
if (stimPlanCell.getJ() == j)
{
stimPlanCellCol.push_back(&stimPlanCell);
}
}
return stimPlanCellCol;
}