ResInsight/ApplicationCode/ReservoirDataModel/RigTofAccumulatedPhaseFractionsCalculator.cpp

134 lines
7.9 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2017- Statoil ASA
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigTofAccumulatedPhaseFractionsCalculator.h"
#include "RigCaseCellResultsData.h"
#include "RigEclipseCaseData.h"
#include "RigFlowDiagResultAddress.h"
#include "RigFlowDiagResults.h"
#include "RigResultAccessor.h"
#include "RigResultAccessorFactory.h"
#include "RigSingleWellResultsData.h"
#include "RimEclipseResultCase.h"
#include "RimFlowDiagSolution.h"
#include "RimReservoirCellResultsStorage.h"
#include <map>
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigTofAccumulatedPhaseFractionsCalculator::RigTofAccumulatedPhaseFractionsCalculator(RimEclipseResultCase* caseToApply,
QString wellname,
size_t timestep)
{
RigEclipseCaseData* eclipseCaseData = caseToApply->eclipseCaseData();
RifReaderInterface::PorosityModelResultType porosityModel = RifReaderInterface::MATRIX_RESULTS;
RimReservoirCellResultsStorage* gridCellResults = caseToApply->results(porosityModel);
size_t scalarResultIndexSwat = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "SWAT");
size_t scalarResultIndexSoil = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "SOIL");
size_t scalarResultIndexSgas = gridCellResults->findOrLoadScalarResult(RiaDefines::DYNAMIC_NATIVE, "SGAS");
size_t scalarResultIndexPorv = gridCellResults->findOrLoadScalarResult(RiaDefines::STATIC_NATIVE, "PORV");
const std::vector<double>* swatResults = &(eclipseCaseData->results(RifReaderInterface::MATRIX_RESULTS)->cellScalarResults(scalarResultIndexSwat, timestep));
const std::vector<double>* soilResults = &(eclipseCaseData->results(RifReaderInterface::MATRIX_RESULTS)->cellScalarResults(scalarResultIndexSoil, timestep));
const std::vector<double>* sgasResults = &(eclipseCaseData->results(RifReaderInterface::MATRIX_RESULTS)->cellScalarResults(scalarResultIndexSgas, timestep));
const std::vector<double>* porvResults = &(eclipseCaseData->results(RifReaderInterface::MATRIX_RESULTS)->cellScalarResults(scalarResultIndexPorv, timestep));
RimFlowDiagSolution* flowDiagSolution = caseToApply->defaultFlowDiagSolution();
std::string resultNameTof = "TOF";
const std::vector<double>* tofData = flowDiagSolution->flowDiagResults()->resultValues(RigFlowDiagResultAddress(resultNameTof,
RigFlowDiagResultAddress::PhaseSelection::PHASE_ALL,
wellname.toStdString()),
timestep);
std::string resultNameFraction = "Fraction";
const std::vector<double>* fractionData = flowDiagSolution->flowDiagResults()->resultValues(RigFlowDiagResultAddress(resultNameFraction,
RigFlowDiagResultAddress::PhaseSelection::PHASE_ALL,
wellname.toStdString()),
timestep);
sortTofAndCalculateAccPhaseFraction(tofData,
fractionData,
porvResults,
swatResults,
soilResults,
sgasResults,
m_accumulatedPhaseFractionSwat,
m_accumulatedPhaseFractionSoil,
m_accumulatedPhaseFractionSgas,
m_tofInIncreasingOrder);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigTofAccumulatedPhaseFractionsCalculator::sortTofAndCalculateAccPhaseFraction(const std::vector<double>* tofData,
const std::vector<double>* fractionData,
const std::vector<double>* porvResults,
const std::vector<double>* swatResults,
const std::vector<double>* soilResults,
const std::vector<double>* sgasResults,
std::vector<double>& tofInIncreasingOrder,
std::vector<double>& accumulatedPhaseFractionSwat,
std::vector<double>& accumulatedPhaseFractionSoil,
std::vector<double>& accumulatedPhaseFractionSgas)
{
std::map<double, std::vector<int> > tofAndIndexMap;
for (int i = 0; i < tofData->size(); i++)
{
std::vector<int> vectorOfIndexes;
vectorOfIndexes.push_back(i);
auto iteratorBoolFromInsertToMap = tofAndIndexMap.insert(std::make_pair(tofData->at(i), vectorOfIndexes));
if (!iteratorBoolFromInsertToMap.second)
{
//Element exist already, was not inserted
iteratorBoolFromInsertToMap.first->second.push_back(i);
}
}
double fractionPorvSum = 0.0;
double fractionPorvPhaseSumSwat = 0.0;
double fractionPorvPhaseSumSoil = 0.0;
double fractionPorvPhaseSumSgas = 0.0;
for (auto element : tofAndIndexMap)
{
double tofValue = element.first;
for (int index : element.second)
{
fractionPorvSum += fractionData->at(index) * porvResults->at(index);
fractionPorvPhaseSumSwat += fractionData->at(index) * porvResults->at(index) * swatResults->at(index);
fractionPorvPhaseSumSoil += fractionData->at(index) * porvResults->at(index) * soilResults->at(index);
fractionPorvPhaseSumSgas += fractionData->at(index) * porvResults->at(index) * sgasResults->at(index);
}
tofInIncreasingOrder.push_back(tofValue);
accumulatedPhaseFractionSwat.push_back(fractionPorvPhaseSumSwat / fractionPorvSum);
accumulatedPhaseFractionSoil.push_back(fractionPorvPhaseSumSoil / fractionPorvSum);
accumulatedPhaseFractionSgas.push_back(fractionPorvPhaseSumSgas / fractionPorvSum);
}
}