ResInsight/ApplicationCode/ReservoirDataModel/RigEclipseNativeStatCalc.cpp
2015-11-04 15:53:21 +01:00

136 lines
4.4 KiB
C++

/////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) Statoil ASA
// Copyright (C) Ceetron Solutions AS
//
// ResInsight is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// ResInsight is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.
//
// See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html>
// for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#include "RigEclipseNativeStatCalc.h"
#include "RigStatisticsMath.h"
#include "RigCaseCellResultsData.h"
#include "RigStatisticsMath.h"
#include <cmath> // Needed for HUGE_VAL on Linux
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
RigEclipseNativeStatCalc::RigEclipseNativeStatCalc(RigCaseCellResultsData* cellResultsData, size_t scalarResultIndex)
: m_resultsData(cellResultsData),
m_scalarResultIndex(scalarResultIndex)
{
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseNativeStatCalc::minMaxCellScalarValues(size_t timeStepIndex, double& min, double& max)
{
std::vector<double>& values = m_resultsData->cellScalarResults(m_scalarResultIndex, timeStepIndex);
size_t i;
for (i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL)
{
continue;
}
if (values[i] < min)
{
min = values[i];
}
if (values[i] > max)
{
max = values[i];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseNativeStatCalc::posNegClosestToZero(size_t timeStepIndex, double& pos, double& neg)
{
std::vector<double>& values = m_resultsData->cellScalarResults(m_scalarResultIndex, timeStepIndex);
size_t i;
for (i = 0; i < values.size(); i++)
{
if (values[i] == HUGE_VAL)
{
continue;
}
if (values[i] < pos && values[i] > 0)
{
pos = values[i];
}
if (values[i] > neg && values[i] < 0)
{
neg = values[i];
}
}
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseNativeStatCalc::addDataToHistogramCalculator(size_t timeStepIndex, RigHistogramCalculator& histogramCalculator)
{
std::vector<double>& values = m_resultsData->cellScalarResults(m_scalarResultIndex, timeStepIndex);
histogramCalculator.addData(values);
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
void RigEclipseNativeStatCalc::valueSumAndSampleCount(size_t timeStepIndex, double& valueSum, size_t& sampleCount)
{
std::vector<double>& values = m_resultsData->cellScalarResults(m_scalarResultIndex, timeStepIndex);
size_t undefValueCount = 0;
for (size_t cIdx = 0; cIdx < values.size(); ++cIdx)
{
double value = values[cIdx];
if (value == HUGE_VAL || value != value)
{
++undefValueCount;
continue;
}
valueSum += value;
}
sampleCount += values.size();
sampleCount -= undefValueCount;
}
//--------------------------------------------------------------------------------------------------
///
//--------------------------------------------------------------------------------------------------
size_t RigEclipseNativeStatCalc::timeStepCount()
{
return m_resultsData->timeStepCount(m_scalarResultIndex);
}